Background: Dimensional changes of acrylic denture bases after polymerization results in need for further adjustments or even ends with technical failure of the finished dentures. The purpose of this study was to estimate the linear dimensional changes for different palatal depths when using multiple investment materials and polymerization techniques. Materials and methods: Ninety upper complete denture bases were constructed for this study. They were divided into two main groups according to the polymerization methods: conventional water bath and experimental autoclave (short and long cycles). Each main group was further subdivided into three subgroups according to the palatal depth (shallow, medium and deep). Furthermore, for each palatal depth; complete denture bases were invested either with dental stone or laboratory silicone. For each upper complete denture, measurements of linear dimensional changes were done by fixation of metallic screws on the tissue surface of the denture base. The distances were measured by using travelling microscope with an accuracy of 0.001 %. The data were statistically analyzed using three way analysis of variance (ANOVA) for three variables, which were (palatal depth, investments and polymerization techniques), LSD test and student T test for comparisons between groups. Results: There were significant improvements in the dimensional accuracy of denture bases cured with autoclave compared with water bath. Also, silicone investments were a successful alternative to stone, study data shows that short autoclave processing with silicone reduces the magnitude of the linear dimensional changes. On the other hand, long autoclave processing and stone investments were better than silicone in reducing dimensional changes. Conclusion: The findings of this study indicates that the use of autoclave processing in acrylic curing is a promising alternative to the conventional water bath and leads to better dimensional stability for the finished dentures in all oral configurations and palatal depths. Also, Silicone is more preferable than stone, although it's not as strong investing materials when compared with stone.
The influence of Toxoplasma gondii on some biochemical parameters has lately gained an increasing attention. The aim of this study was to assess the levels of some biochemical parameters in Toxoplasma positive and negative subjects. An analytical case–control study was achieved in Baghdad for the period from October 2018 until March 2019. Forty nine females participated in this study, with an age range of 18-55 years. The participants were separated into two groups, namely Toxoplasma positive subjects (n=21) and Toxoplasma negative subjects (n=28), based on enzyme-linked immunosorbent assay (ELISA). Blood and serum samples were collected from all subjects to evaluate the serum levels of cholesterol, triglycerides, high density lip
... Show MoreThe current research aims to know the effect of teaching using multiple intelligences theory on academic achievement for students of primary school. The sample search of pupils . The research sample was divided into two groups where the first group represented the experimental group which studied the use of multiple intelligences and the second group represented the control group which studied the use of the traditional way . The search tool consisted of achievement test. Showed search results, there are statistically significant differences(0.05) between the average scores of students who have studied according to multiple intelligences between the average scores of students who have studied in accordance with the tradition way in the p
... Show MoreKE Sharquie, AA Noaimi, SY Mohsin, 2011 - Cited by 4
The study is about Maxwell , three dimensions of non – Newtonian fluid. Method of th Homotopy applied to analysis mass transfer and heat with thermophoresis effects. (Sc), Impact of therrmophoretic (𝜏), magnetic (M), Biot (γ), radiation (Rd),Schmidt Prandtle (Pr) parameters and ratio parameter(β) on concentration, temperature are offered in the paper.
Objectives: This study aims to assess and compare the micro-shear bond strength (μSBS) of a novel resin-modified glass-ionomer luting cement functionalized with a methacrylate co-monomer containing a phosphoric acid group, 30 wt% 2-(methacryloxy) ethyl phosphate (2-MEP), with different substrates (dentin, enamel, zirconia, and base metal alloy). This assessment is conducted in comparison with conventional resin-modified glass ionomer cement and self-adhesive resin cement. Materials and methods: In this in vitro study, ninety-six specimens were prepared and categorized into four groups: enamel (A), dentin (B), zirconia (C), and base metal alloys (D). Enamel (E) and dentin (D) specimens were obtained from 30 human maxillary first premolars e
... Show More