Background: Colonization of soft denture liners by Candida albicans and other microorganisms continued to be a serious problem. The aim of this study was to evaluate the effect of incorporating silver nanoparticles into heat cured acrylic-based soft denture liner on the antifungal activity, and on water sorption, solubility, shear bond strength and color change of the soft lining material. Furthermore, evaluating the amount of silver released. Materials and methods: Silver nanoparticles were incorporated into soft denture liner in different percentages (0.05%, 0.1% and 0.2% by weight). Four hundred and twenty specimens were prepared and divided into five groups according to the test to be performed. The antifungal activity of the soft liner/AgNPs composite was evaluated in three different periods by using (viable count of C. albicans and disk-diffusion test). The amount of silver released in artificial saliva was measured by atomic absorption spectroscopy. The water sorptions, solubility, shear bond strength and color change was measured and the results were statistically analyzed. Results:All experimental groups showed a highly significant decrease in colony forming units of C. albicans in comparison to control group. There was no inhibition zone around any test specimen of any test group. There was no silver detected to be released. The addition of AgNPs resulted in a highly significant decrease in water sorption, while only 0.2% group showed highly significant decrease in solubility. Non significant differences in shear bond strength were found. A highly significant increase in light absorption percentage was observed in all experimental groups. Conclusion: The addition of AgNPs helps to produce soft denture liner with antifungal properties. Silver was not detected to be released. This addition resulted in decrease in water sorption, and did not affect the shear bond strength and it increased the opacity of the material.
Proteus mirabilis is considered as a third common cause of catheter-associated urinary tract infection, with urease production, the potency of catheter blockage due to the formation of biofilm formation is significantly enhanced. Biofilms are major virulence factors expressed by pathogenic bacteria to resist antibiotics; in this concern the need for providing new alternatives for antibiotics is getting urgent need, This study aimed to explore whether green synthesized zinc oxide nanoparticles (ZnO NPs) can function as an anti-biofilm agent produced by P.mirabilis. Bacterial cells were capable of catalyzing the biosynthesis process by producing reductive enzymes. The nanoparticles were synthesized from cell free
... Show MoreWaste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show MoreCuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
This study is concerned with the effect of Deep Cryogenic Treatment (DCT) at liquid nitrogen temperature (-196 o C) on the mechanical properties and performance of low carbon steel (A858). The tests specimens were divided in to two groups, the first group was subjected to the conventional heat treatment of normalizing, and the second group was also normalized then subjected to (DCT). The results have shown that after (DCT), the Hardness, Tensile properties and the impact energy absorbed were all slightly increased. However the fatigue test showed some positive improvement in fatigue limit by 20(N/mm2 ), and the volume wear rates at different loads were significantly decreased after (DCT). The changes in microstructure due to (DCT) were c
... Show MoreSheets of Epoxy (EP) resin with addition of TiO2 of grain size (1.5μm, and 50nm) and weight percentage (1%, 3%, and 5%) were prepared. Discs of 20mm diameter and 3mm thickness were cut for dielectric measurements. Dielectric properties (dielectric constant, dispassion factor and electrical conductivity) over the frequency range 102 -106 Hz were measured.
Comparison was made between the effect of micro and nano particles of TiO2 on the dielectric properties of EP composites with different weight percentage. Epoxy composites with micro sized particles of TiO2 were observed to have the better values of dielectric properties.
The study concern with the preparation of three type of mixtures; which are prepared from different percentage of polyvenil Butyral, Di-n-butyl phathalate and paraffin wax pastillated. The solvent used is Xylolzul analyses. After washing, Drying and milling the kaolin Dukhla, as a matrix in this study, and by using sieving Tech. The range of particle size used is less than and less than as a mesh batch. The added percentage from prepared mixture were 5% and 10% to 95% and 90% of the matrix respectively. Then disk samples were prepared by using a compaction pressure with heating. After cooling and drying the samples were undergo heat treatment in the range of (1250 – 1350) oC. The measurement of shrinkage and Dielectric properties sho
... Show MoreEP/ metal composites were prepared as adhesives between two steel rods. Epoxy resin (EP) was used as a matrix with metal as fillers (Al, Cu, Fe,).
The preparation method for tensile adhesion tests includes two steel rods with adhesive composites between the rods to measure adhesion strength Sad and adhesion toughness Gad.
Results of tensile adhesion tests show that EP/ metals composite have maximum strength Sad for certain weight percentage of metals 2.95 and 9MPa at 10% for EP/Al and EP/Cu composite and 8.2MPa at 40% for EP/Fe composites
Free cement refractory concrete is a type of refractory concrete with replacing alumina cement by bonding materials such as white kaolin, red kaolin and fumed silica. The free cement refractory concrete used in many applications like Petrochemicals, iron furnaces and cement production industries. The research clarifies the effect of steel fibers with two types crimped steel fibers and hooked steel
fibers with percentages 0.5%, 1% and 1.5% by volume from weight of bauxite aggregates. The additions of steel fibers with two types gave good properties in high temperatures where the specimens keep the dimension without failure and the properties made the best. the percentage of increasing for thermal conductivity was 44% for 1.5% crimped