Background: Heat-cured poly (methyl methacrylate) the principal material for the fabrication of denture base have a relatively poor mechanical properties. The aim of this study was to investigate the effect of glass flakes used as reinforcement on the surface hardness and surface roughness of the heat-processed acrylic resin material. Material and method: Glass flakes (product code: GF002) pretreated with silane coupling agent were added to Triplex® denture base powder using different concentrations. A total of 100 specimens of similar dimensions (65 x 10 x 2.5) mm were prepared, subdivided into 2 main groups of 50 specimens for each of the study tests. Ten specimens for the control group and 40 specimens for each of the experimental groups (2%, 3%, 5%, and 7%) glass flakes content. The surface hardness was evaluated using the Shore D hardness test, while the surface roughness was evaluated using a profilometer device that detect the geometry of the specimen unpolished surface. Results were analyzed using the Wilcoxon rank sum test and the 1-way analysis of variance, (P-value 0.05). Results: The surface hardness tended to increase significantly p˂ 0.05 with the increasing flakes concentration, as an increase of 5.12% was recorded in surface hardness for the highest loading level; while the roughness showed a significant increase that remained within the tolerable range –less than 2µm– (significant bacterial colonization would occur if the surface roughness is more than 2µm). Conclusion: The addition of glass flakes to heat-cured poly(methyl methacrylate) enhanced the hardness of the material, the improvement was statistically significant for the higher glass flakes concentrations (5% and7%), while for the surface roughness there were a constant increase in roughness along with the increasing glass flakes content
The present study is a hybrid method of studying the effect of plasma on the living tissue by using the image processing technique. This research explains the effect of microwave plasma on the DNA cell using the comet score application, texture analysis image processing and the effect of microwave plasma on the liver using texture analysis image processing. The study was applied on the mice cells. The exposure to the plasma is done by dividing the mice for four groups, each group includes four mice (control group, 20, 50, 90 second exposure to microwave plasma). The exposure to microwave plasma was done with voltage 175v and gas flow on 2 with room temperature; the statistical features are obtained from the comet score images and the textur
... Show MoreBackground: Titanium implant is widely used in dentistry because of its extraordinary biocompatibility and mechanical properties. To increase bone–implant connection and provide early loading after placement, implant is stored in different storage medium and treated with UV light. Both of them are applicable methods to increase the bioactivity of titanium and overcome the biological aging. This study was designed to assess the effect of vacuum storage method and air storage with and without UV light treated of Cp Ti implant mechanically and histologically. Materials and methods: Titanium screws were acid etched and prepared in four different modes using different storage methods (air or vacuum and, with or without UV treatment. The implan
... Show MoreIn this study, nickel cobaltite (NC) nanoparticles were created using the sol-gel process and used as an adsorbent to adsorb methyl green dye (MG) from aqueous solutions. The adequate preparation of nickel cobaltite nanoparticles was verified using FT-IR, SEM, and X-ray diffraction (XRD) studies. The crystalline particle size of NC nanoparticles was 10.53 nm. The effects of a number of experimental variables, such as temperature, adsorbent dosage, and contact time, were examined. The optimal contact time and adsorbent dosage were 120 minutes and 4.5 mg/L, respectively. Four kinetic models—an intraparticle diffusion, a pseudo-first-order equation, a pseudo-second-order equation, and the Boyd equation—were employed to monitor the adsorpti
... Show MoreIN this work, a titanium dental implant was modified by electro-polymerized of 4-allyl-2-methoxyphenol (Eugenol) using direct current lower than 3.5 volt. The modification of titanium dental implant was achieved to improve its corrosion resistant. Fourier transform infrared spectroscopy (FTIR) was employed to confirm the electro-polymerization of Eugenol to Poly Eugenol (PE) on pure titanium. Deposition of PE on titanium was confirmed by X-ray diffraction and was characterized by thermogravimetric analysis (TGA). The surface morphology of polymeric film were examined through scanning electron microscopy (SEM). Coated titanium by (PE) revealed a good corrosion protection efficiency even at temperature ranged (293-323)K in artificial saliva.
... Show MoreThis study is a complementary one to an extended series of research work that aims to produce a thermodynamiclly stable asphalt –sulfur blend. Asphalt was physically modified wiht different percentages of asphaltenes , oxidized asphaltenes and then mixed with sulfur as an attempt to obtaine a stable compatible asphalt-sulfur blend. The homogeneneity of asphalt-asphaltenes[oxidized asphaltenes]-sulfur blends were studied microscopically and the results are prsented as photomicrographs. Generally more stable and compatible asphalt-sulfur blends were obtained by this treatment.