Background: The purpose of the current study was to evaluate the efficacy of a new orthodontic bonding system (Beauty Ortho Bond) involving the shear bond strength in dry and wet environments, and adhesion remnant index (ARI) scores evaluation in regard to other bonding systems (Heliosit and Resilience Orthodontic Adhesives). Materials and methods: Sixty defect free extracted premolars were randomly divided into six groups of 10 teeth each, mounted in acrylic resin, three groups for a dry environment and three for a wet one. Shear bond strength test was performed with a cross head speed of 0.5 mm/min, while surfaces of enamel and bracket-adhesive-enamel surfaces were examined with stereomicroscope For ARI scores evaluation. Data were analyzed by one way analysis of variance, least significant difference, student's t-test, and Fisher exact test. Results: The mean shear bond strength showed highest values for Resilience adhesive followed by Beauty Ortho Bond and Heliosit adhesives respectively both in dry and wet environments. Interestingly, there was a non-significant difference (P<0.05) between Resilience and Beauty Ortho Bond adhesives using least significant difference at dry environment. In wet environment the Beauty Ortho Bond showed an acceptable mean shear bond strength value (6.39 Mpa) which is considered as a clinically acceptable value. Adhesive remnant index scores demonstrated a tendency towards score 1 in dry environment, and towards score 3 in wet environment, the scores also showed a non-significant difference (P<0.05) between Resilience and Beauty Ortho Bond adhesives using Fischer exact test. Conclusion: Beauty Ortho Bond is less sensitive to wet environment than Resilience and Heliosit adhesives, therefore it has an advantage during clean up, as it reduces the risk of enamel damage during debonding procedure. Keywords: Beauty Ortho Bond, Shear bond strength, light cured composite.
New metal complexes of some transition metal ions Co(II), Cu(II) , Cd(II) and Zn(II) were prepared by their reaction with previously prepared ligands HLI= (P-methyl anilino) phenyl acetonitrile and HLII = (P-methyl anilino) –P– chloro phenyl acetonitrile . The two ligands were prepared by Strecker’s procedure which includ the reaction of p- toluidine with benzaldehyde and P- chlorobenzaldehyde respectively. Structures were proposed depending on atomic absorption , i.r. and u.v.visible spectra in addition to magnetic susceptibility and electrical conductivity measurements.
Mixing aluminum nitrate nonahydrate with urea produced room temperatures clear colorless ionic liquid with lowest freezing temperature at (1: 1.2) mole ratio respectively. Freezing point phase diagram was determined and density, viscosity and conductivity were measured at room temperature. It showed physical properties similar to other ionic liquids. FT-IR,UV-Vis, 1H NMR and 13C NMR were used to study the interaction between its species where - CO ??? Al- bond was suggested and basic ion [Al(NO3)4]? and acidic ions [Al(NO3)2. xU]+ were proposed. Water molecule believed to interact with both ions. Redox potential was determined to be about 2 Volt from – 0.6 to + 1.4 Volt with thermal stability up to 326 ?.
The new ligand [3,3’-(1,2-phenylenebis(azanediyl))bis(5,5-dimethylcyclohex-2-en-1-one)] (L) derived from 5,5-Dimethylcyclohexane-1,3-dione with 1,2-phenylenediamine was used to prepare a new chain of metal complexes of Mn(ii), Co(ii), Ni(ii), Cu(ii), Cd(ii) and Zn(ii) by inclusive formula [M(L)]Cl2. Characterized compounds on the basis of 1H, 13CNMR (for ligand (L)), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H and %N, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA), while its corrosion inhibition for (plain steel) in tap water is studied by weight loss. These measurements proved th
Low grade crude palm oil (LGCPO) presents as an attractive option as feedstock for biodiesel production due to its low cost and non-competition with food resources. Typically, LGCPO contains high contents of free fatty acids (FFA), rendering it impossible in direct trans-esterification processes due to the saponification reaction. Esterification is the typical pre-treatment process to reduce the FFA content and to produce fatty acid methyl ester (FAME). The pre-treatment of LGCPO using two different acid catalysts, such as titanium oxysulphate sulphuric acid complex hydrate (TiOSH) and 5-sulfosalicylic acid dihydrate (5-SOCAH) was investigated for the first time in this study. The optimum conditions for the homogenous catalyst (5-SOCAH) wer
... Show MoreWith the aim of developing potential antimicrobials, a series of new 5-fluoroisatin derivatives incorporated with different secondary amines (piperidine, morpholine, pyrrolidine, dimethylamine, and diphenylamine) for monomer, and (piperazine) in case of dimer Mannich bases, separately in presence of formaldehyde to obtain Mannich bases of 5-fluoroisatin derivatives, which then each Mannich derivatives reacts with phenylhydrazine to form Schiff bases as final products. The resulting compounds were characterized by two spectroscopic analyses; (Fourier- transform infrared) FT-IR and proton nuclear magnetic resonance spectroscopy (¹H-NMR). In addition, the in vitro antibacterial and antifungal activities were tested against some human pathogen
... Show MoreThe aim of this study is to investigate the role of prodigiosin on P. aeruginosa' s biofilm genes involved in the pathogenicity and persistency of the bacteria; Materials and methods: Gram negative bacterial isolates were taken from burn and wounds specimen obtained from some of Baghdad hospitals. Forty six isolates were identified as Pseudomonas aeruginosa and four isolates as Serratia marcescens by using biochemical tests and VITEK 2 compact system. Susceptibility test was performed for all P. aeruginosa isolates, the results showed that 100% were resistant to Amikacin and 98% were sensitive to Meropenem. Resistant isolates were tested for biofilm formation; the strong and moderate isolates (17) were detected by PCR for AlgD gene
... Show MoreA comparative study was carried out to evaluate alkaloid antibacterial activity which was extracted from the root bark Punica granatum L. by liquid membrane techniques (SA) and organic solvent traditional techniques (SB). The screening of the antimicrobial activity was conducted by agar well diffusion method against Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis at three concentration levels (5, 10 and 15 mg/ml). Alkaloid extracts were analyzed by a high performance liquid chromatography (HPLC) method. Among the tested extractions, SB showed the highest antibacterial activity against all five bacterial strains, especially at 15 mg/ml concentration. However, all the B type solution
... Show More