Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirement. The purpose of this study was to evaluate the effect of addition of 3% wt of treated (silanized) Titanium oxide Nano filler on some physical and mechanical properties of heat cured acrylic denture base material. Materials and methods: 100 specimens were constructed, 50 specimens were prepared from heat cure PMMA without additives (control) and 50 specimens were prepared from heat cure PMMA with the addition of TiO2 Nano fillers. Each group was divided into 5 sub groups according to the test performed which was mixed by probe ultra-sonication machine. Results: A highly significant increase in impact strength and transverse strength was observed with the addition of (TiO2) Nano particles to (PMMA). A significant increase in surface hardness and in surface roughness. The water sorption and solubility were significantly decreased when compared with the control group. Conclusions: The addition of TiO2 Nano particles to heat cure acrylic resin improve the impact strength, transverse strength and surface hardness of heat cure acrylic resin at the same time this addition decrease water sorption and solubility. On the other hand there was an increase in surface roughness with the addition of 3% wt of silanized TiO2 Nano particles. Keywords: NanoTiO2, TMSPM, PMMA.
The research aims to indicate the relationship between lean production tools included seven {constant improvement , and Just in time (JIT), and the production smoothing , and quality at the source, and standardized work, Visual management, and activities 5S } and Mass Customization strategy for the model (Pine & Gilomer, 1997) {collaborative, adaptive, cosmetic, transparent}, as well as providing a conceptual framework and applied for variables search to clarify how they will choose a Mass Customization strategy through the lean production tools, , and recognize the reality of the practices of Iraqi industries in such a field. Moreover, aims to highlight the positive aspects that accrue to companies a
... Show MoreIn the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr
... Show MoreTransparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur
... Show MoreThe Journal of Studies and Researches of Sport Education (JSRSE)
Three different distribution modules of silicon solar cells in a panel are used in this study . Each module consists of five identical circular silicon solar cells of radius (5cm) and then the total panel areas are identical. The five solar cells are arranged in the panel in different shapes: circular, triangular and rectangular .The efficiency for these three panel distribution are measured indoor and outdoor. The results show that the efficiency is a function of the cells distribution.