Background: Poly propylene fibers with and without silane treatment have been used to reinforce heat cure denture base acrylic but, some mechanical properties like transverse strength, impact strength, tensile strength, hardness, wear resistance and wettability. Which are related to the clinical use of the prosthesis are not evaluated yet. The aim of the study is to identify the influence of incorporation of treated and untreated fibers on these properties Materials and methods: Eighty four heat cure acrylic specimens were constructed by conventional flasking technique. They were divided into six groups according to the tests and each group was subdivided into two subgroups control and experimental groups (seven samples for each subgroup).Transversestrength and Tensile strength test were performed using Instron universal testing machine. The impact strength test was evaluated by the use of Impact testing device. Wear resistance was evaluated by pin on disk wear measurement method while, a digital microscope supplied with high resolution camera was utilized to measure the contact angle reflecting wettability grade. Descriptive statistics and independent t test were used for statistical significance. Results:The results revealed that the addition of Silanated polypropylene fibers produced significant difference in transverse strength and highly significant difference in tensile strength, the impact strength,Wettability value compared with the control group also the results showed that the hardness test was not significant and different control group . Wear resistance was highly significant decreased in experimental groups Conclusion: Incorporation of silanated treated Poly propylene fibers to heat cure Poly methyl methacrylate resin was beneficial regarding the tested properties to improve the mechanical properties of the resin. Key words: Poly propylene fibers, transverse strength, impact strength, tensile strength, hardness, wear resistance, wettability.
This research is addressing the effect of different ferrocene concentration (0.00, 2.15x10-3, 4.30x10-3, 8.60x10-3, and 12.9x10-3) on the bulk free radical polymerization of methyl methacrylate monomer in benzene using benzoyl peroxide as initiator. The polymerization was conducted at 60º C under free oxygen atmosphere. The resulting polymers were characterized by FTIR. The results were compared with the presence and absence of ferrocene at 10% conversion. The %conversion was 3.04% with no ferrocene present in the polymerization medium and its increase to 9.06 with a first lowest ferrocene concentration added, i.e. 2.15 x10-3mol/l. This was positively reflected on the poly(methyl methacrylate) molecular weight measured by viscosity techniq
... Show MoreAsphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show MoreThis study evaluates the performance of magnetic abrasive finishing (MAF) of aluminum alloy in terms of achieving materials removal (MR). A vertical milling machine is used to perform the finishing process using a developed MAF unit that consists of an inductor made out of a 150 mm long and 20 mm diameter iron core wound with 1500 turns and 0.5 mm copper wire. The commutator and magnetic pole are attached at the top and bottom of the inductor, respectively. The required current is supplied using a DC power supply. The South Pole workpiece is a 100×50×3 mm3 plate of AA 1100 aluminum alloy, whereas the magnetic pole represented the North Pole. Pole rotational speed, applied current, and abrasive finishing time was selected as
... Show Morethe films of cdse pure and doped with copper ratio glass substrate effect od cucomcentration technique thikness doped with copper is an anonmg and the density of state increases
The rheological and fusion behavior of polyvinyl chloride (PVC) compounds plays a dominant role in
the processing operations and in the development of physical properties in the processed material. A
comprehensive study was made in this work to evaluate the effect of shear and thermal history on stability, mechanical and rheological properties of rigid PVC compounds. Different samples of Rigid Poly vinyl chloride including dry blend powder, granules, and bottles molded from both were examined. A study was also made on recycled RPVC where 25% of reclaimed material was continuously blended with fresh dry blend and processed for 15 cycles. Results showed that compaction of the PVC material took place in the brabender plastograph at co
Zinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreBackground: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreThe purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreAbstract: This research was performed to study the effect of some amino acids and vitamins on the growth of bacteria Staphylococcus aureas and its sensitivity against UV light. The results showed low inhibition in bacterial growth because amino acids repairs the damges caused by UV light. Besides the effect of two groups of antibiotics (β-lactame and tetracycline) on the growth of S. aureus and the possible interference of amino acids and vitamins in the activity of the antibiotics against this bacteria in the presence of UV light were studied. The result show increase in the sensitivity towards these antibiotics and provided protection against the antibiotics.
This research aims to study the effect of microwave furnace heat on the mechanical properties and fatigue life of aluminum alloy (AA 2024-T3). Four conditions were used inside microwave furnace (specimens subjected to heat as dry for 30 and 60min. and specimens subjected to heat as wet (water) for 30 and 60 min.), and compared all results with original alloy (AA 2024-T3). Tensile, fatigue, hardness and surface roughness tests were used in this investigation. It is found that hardness of dry conditions is higher than wet conditions and it increases with increasing of time duration inside microwave furnace for dry and wet conditions. Also, tensile strength has the same behavior of hardness, but it increases with decreasing
... Show More