Background: Oral squamous cell carcinoma is the most prevalent malignant neoplasm of the oral cavity which results from accumulated genetic and epigenetic alterations. It is not always inexorable and may be reversible if early intervention in the process can occur to prevent further genetic mutation and disease progression. The FHIT gene is a tumor suppressor gene located in FRA3B region which is the most active common fragile site, where DNA damage leading to aberrant transcripts and translocations frequently occur. The WWOX is a tumor suppressor gene that plays a central role in tumor suppression through transcriptional repression and apoptosis, with its apoptotic function the more prominent of the two. This study aimed to evaluate and compare the immunohistochemical expression of FHIT and WWOX in normal oral mucosa, oral epithelial dysplasia and oral squamous cell carcinoma and to correlate the expression of the mentioned markers with the clinicopathological features and to show the expression of studied markers with each other. Materials and methods: Fifty formalin-fixed, paraffin embedded tissue blocks (10 cases of normal oral mucosa, 19 cases of oral epithelial dysplasia, and 21 cases of oral squamous cell carcinoma) were included in this study. Immunohistochemical staining was performed using anti FHIT polyclonal antibody, and anti WWOX polyclonal antibody. Results: Positive IHC of FHIT was detected with high score in all cases of NOM, 16 cases (84%) of OED and 18 cases (86%) of OSCC. For WWOX expression positive IHC detected with high score in all cases (100%) of NOM, 14 cases (74%) of OED and 15 cases (71%) of OSCC. There was statistically highly significant correlation of both markers in OED and non significant correlation in OSCC, with significant differences among studied groups. Conclusions: These results signifying both markers cooperative tumor suppressive role and potential pathological transition from normal oral mucosa to dysplastic epithelium and subsequently cause malignant oral lesions.
In this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
In the present work, the behavior of thick-walled cylinder of elasto-plastic material (polymeric material) has been studied analytically. The study is based on modified Von-Mises yield criterion (for non metallic material). The equations of stress distribution are obtained for the cylinder under general cases of elastic expansion, plastic initiation and elastic-plastic expansion.
A computer program is developed for evaluating the stress distribution. The solution is carried out for worst boundary conditions when the cylinder is subjected to the combination of pressure load, inertia load, and temperature gradient.
The results are presente
... Show MoreAn integrated GIS-VBA (Geographical Information System – Visual Basic for Application), model is developed for selecting an optimum water harvesting dam location among an available locations in a watershed. The proposed model allows quick and precise estimation of an adopted weighted objective function for each selected location. In addition to that for each location, a different dam height is used as a nominee for optimum selection. The VBA model includes an optimization model with a weighted objective function that includes beneficiary items (positive) , such as the available storage , the dam height allowed by the site as an indicator for the potential of hydroelectric power generation , the rainfall rate as a source of water . In a
... Show MoreThis study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go
... Show MoreThe consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show More