Background: Oral squamous cell carcinoma is the most prevalent malignant neoplasm of the oral cavity which results from accumulated genetic and epigenetic alterations. It is not always inexorable and may be reversible if early intervention in the process can occur to prevent further genetic mutation and disease progression. The FHIT gene is a tumor suppressor gene located in FRA3B region which is the most active common fragile site, where DNA damage leading to aberrant transcripts and translocations frequently occur. The WWOX is a tumor suppressor gene that plays a central role in tumor suppression through transcriptional repression and apoptosis, with its apoptotic function the more prominent of the two. This study aimed to evaluate and compare the immunohistochemical expression of FHIT and WWOX in normal oral mucosa, oral epithelial dysplasia and oral squamous cell carcinoma and to correlate the expression of the mentioned markers with the clinicopathological features and to show the expression of studied markers with each other. Materials and methods: Fifty formalin-fixed, paraffin embedded tissue blocks (10 cases of normal oral mucosa, 19 cases of oral epithelial dysplasia, and 21 cases of oral squamous cell carcinoma) were included in this study. Immunohistochemical staining was performed using anti FHIT polyclonal antibody, and anti WWOX polyclonal antibody. Results: Positive IHC of FHIT was detected with high score in all cases of NOM, 16 cases (84%) of OED and 18 cases (86%) of OSCC. For WWOX expression positive IHC detected with high score in all cases (100%) of NOM, 14 cases (74%) of OED and 15 cases (71%) of OSCC. There was statistically highly significant correlation of both markers in OED and non significant correlation in OSCC, with significant differences among studied groups. Conclusions: These results signifying both markers cooperative tumor suppressive role and potential pathological transition from normal oral mucosa to dysplastic epithelium and subsequently cause malignant oral lesions.
An atomic force microscope (AFM) technique is utilized to investigate the polystyrene (PS) impact upon the morphological properties of the outer as well as inner surface of poly vinyl chloride (PVC) porous fibers. Noticeable a new shape of the nodules at the outer and inner surfaces, namely "Crater nodules", has been observed. The fibers surface images have seen to be regular nodular texture at the skin of the inner and outer surfaces at low PS content. At PS content of 6 wt.%, the nodules structure was varied from Crater shape to stripe. While with increasing of PS content, the pore density reduces as a result of increasing the size of the pore at the fiber surface. Moreover, the test of 3D-AFM images shows that the roughness of both su
... Show MoreThis paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreA total of 680 fish specimens belonging to 31 species from the Yemeni coastal waters of the Red Sea were inspected for the isopod infestations. Four isopod species belonging to three families of the suborder Cymothoida were detected. These are: Aega psora (Linnaeus, 1758) from Lethrinus lentjan, Natatolana insignis Hobbins and Jones, 1993 from Abalistes stellatus, Excorallana tricornis (Hansen, 1890) from Epinephelus fuscoguttatus, E. guttatus and E. tauvina and Alcirona krebsi Hansen, 1890 from Epinephelus microdon. All these isopod species are reported here for the first time from the Yemeni coastal waters of the Red Se
... Show MoreCarbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show More