Background: Denture relining is the process of resurfacing of the tissue side of the ill fitting denture, the bond strength at the relining-denture base interface is most important for denture durability.The aim of present study was to evaluate the shear bond strength between the thermosens as relining material and different denture base materials that bonded by thermo fusing liquid. As this corrective procedureis the common chair side procedure in the dental clinic. Material and method: Sixty samples were prepared and divided into three main groups according to the type of denture base materials.Group (A) referred to the heat cure acrylic samples which consisted of 20 samples. Group (B) referred to the high impact acrylic samples which consisted of 20 samples. Group (C) referred to the thermosens samples which consisted of 20 samples. All groups then subdivided into two groups; each one consists of 10 samples, according to the surface roughness: (A1, B1and C1 for groups with surface roughness and A2, B2 and C2for groups without surface roughness). Each sample consisted of two similar parts represent the denture base material each part of the sample was designed with dimensions of (70mm X 12mm X 5mmlength, width and depth respectively) having a stopper of depth 3mm. One part of the sample was placed on the other in a manner thatleaving a space between them of dimensions (12mm X 12mm X 3mm length, width and depth respectively) to sandwich the relining material. Results: The results showed that the thermosens samples had the highest value of shear bond strength followed by the high impact acrylic samples, then heat cure acrylic samples which had the lowest value of shear bond strength. The results of present study showed that rough samples had reducedshear bondstrength in comparison with the smooth samples of the same denture base material.
This study involves adding nano materials and interaction with cement mortar behavior for several mortar samples under variable curing time with constant water to cement ratio (W/C = 0.5). The effects of adding nano materials on the microstructure of cement mortar were studied by (Scanning Electronic Microscopy (SEM) and X-Ray (for samples at different curing time 28 and 91 days. Small ratio replacements of nano particles (SiO2 or Al2O3) were added to Ordinary Portland Cement (OPC) type (I). The percentage of nano materials additives replacement by weight of ordinary Portland cement includes (1, 2, 3, 4 and 5%) for both types of nano materials with constant (W/C) ratio, also the amount of the fin
... Show MoreThis research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreLandfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
This study focused on treating wastewater to remove phosphorus by adsorption onto naturaland local materials. Burned kaolin, porcelinite, bauxite and limestone were selected to be testedas adsorption materials.The adsorption isotherms were evaluated by batch experiments, studyingthe effects of pH, temperature and initial phosphorus concentration. The results showed that at pH6, temperature 20°C and 300 mg/l initial phosphorus concentration; the sorption capacity was0.61, 9, 10 and 13 mg/g at 10 h contact time, for burned kaolin, porcelanite, limestone and bauxiterespectively. As the pH increased from 2 to 10 the removal efficiency for the materials differs inbehaviour. The removal efficiency increased from 40 to 90 % for limestone, and dec
... Show MoreAzo-Schiff base compounds (L1 and L2) have been synthesized from the reaction of m-hydroxy benzoic acid with 1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylamine and with 3-[2-(1H-indol-3-yl)-ethylimino]-1,5-dimethyl-2-phenyl- 2,3-dihydro-1H-pyrazol-4-ylamine. The free ligands and their complexes were characterized based on elemental analysis, determination of metal, molar conductivity, (1H, 13C) NMR, UV–vis, FT-IR, mass spectra and thermal analysis (TGA). The molar conductance data revealed that all the complexes are non-electrolytes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a rat
... Show MoreThe finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when
... Show MoreMagnetic Abrasive Finishing (MAF) is an advanced finishing method, which improves the quality of surfaces and performance of the products. The finishing technology for flat surfaces by MAF method is very economical in manufacturing fields an electromagnetic inductor was designed and manufactured for flat surface finishing formed in vertical milling machine. Magnetic abrasive powder was also produced under controlled condition. There are various parameters, such as the coil current, working gap, the volume of powder portion and feed rate, that are known to have a large impact on surface quality. This paper describes how Taguchi design of experiments is applied to find out important parameters influencing the surface quality generated during
... Show MoreEquilibrium and rate of mixing of free flowing solid materials are found using gas fluidized bed. The solid materials were sand (size 0.7 mm), sugar (size0.7 mm) and 15% cast iron used as a tracer. The fluidizing gas was air with velocity ranged from 0.45-0.65 m/s while the mixing time was up to 10 minutes. The mixing index for each experiment was calculated by averaging the results of 10 samples taken from different radial and axial positions in fluidized QVF column 150 mm ID and 900 mm height.
The experimental results were used in solving a mathematical model of mixing rate and mixing index at an equilibrium proposed by Rose. The results show that mixing index increases with inc
... Show More