Background: This study was conducted to assess the effect of sonic activation and bulk placement of resin composite in comparison to horizontal incremental placement on the fracture resistance of weakened premolar teeth. Materials and method: Sixty sound human single-rooted maxillary premolars extracted for orthodontic purposes were used in this study. Teeth were divided into six groups of ten teeth each: Group 1 (sound unprepared teeth as a control group), Group 2 (teeth prepared with MOD cavity and left unrestored), Group 3 (restored with SonicFill™ composite), Group 4 (restored with Quixfil™ composite), Group 5 (restored with Tertic EvoCeram® Bulk Fill composite) and Group 6 (restored with Universal Tetric EvoCeram® composite using horizontal incremental layering technique). Standardized class II MOD cavity was prepared in all teeth except (group 1).After finishing the restorative procedure of each group according to the manufacturer's instructions, all teeth were stored in deionized distilled water in an incubator at 37°C for seven days.All specimens were subjected to compressive axial loading until fracturein a universal testingmachine.Specimens were examined by a stereomicroscope at a magnification of (20X) to evaluate the mode of fracture . Results: The results of this study revealed that the control group exhibited the highest fracture resistance compared to all prepared teeth groups (restored or unrestored) and the differences were statistically highly significant (P<0.01), except with group 3 (which was restored with SonicFill™ composite) where the difference was statistically significant only (P < 0.05).Additionally the results of this study revealed that the prepared unrestored teeth (Group 2) exhibited the lowest fracture resistance compared to all restored groups and the differences were statistically highly significant (P<0.01). Meanwhile, among the restored teeth groups, teeth restored with SonicFill™ composite (group 3) exhibited the highest fracture resistance as compared with all other restored groups and the difference was statistically highly significant (P<0.01). On the other hand, no statistically significant differences in fracture resistance were found among groups 4, 5 and 6, which were restored with Quixfil™ composite, Tetric EvoCeram® Bulk Fill composite and Universal Tetric EvoCeram® composite, respectively (P > 0.05). Group 3and Group 5 showed mostly mixed mode of failure, while Group 4 showed mostly adhesive mode of failure. On the other hand Group 6 teeth showed different modes of failure. Conclusions: SonicFill™ composite can be considered as a viable treatment modality for the restoration of weakened maxillary premolar teeth. On the other hand, the time-consuming incremental layering technique can be substituted with bulk filling, using bulk fill materials (Quixfil™ and Tetric EvoCeram® Bulk Fill) for reinforcement ofweakened maxillary premolars.
The aim of this investigation is to evaluate the experimental and numerical effectiveness of a new kind of composite column by using Glass Fiber‐Reinforced Polymer (GFRP) I‐section as well as steel I‐section in comparison to the typical reinforced concrete one. The experimental part included testing six composite columns categorized into two groups according to the slenderness ratio and tested under concentric axial load. Each group contains three specimens with the same dimensions and length, while different cross‐section configurations were used. Columns with reinforced concrete cross‐section (reference column), encased GFRP I‐section, and encased steel I‐section were adopted in each
Background: Cleaning and shaping of root canals successfully requires high volumes of irrigation solutions that can only be applied to the apical third of root canal after enlargement with instrument, so the aim of this study was to evaluate and to compare the efficiency of Maxi-I-probe (side-vented needle), in the amount of root canal irrigant penetration for five different master apical file sizes (MAF) and four different degrees of coronal and middle thirds flaring. Materials and Methods: Two hundred resin blocks with simulated root canals were used in this study and divided into 5 major groups (40 for each) based on the size of master apical files (#20, #25, #30, #35, and #40). Each major group was subdivided into 4 subgroups depending
... Show MoreBackground: To investigate the effect of different types of storage media on enamel surface microstructure of avulsed teeth by using atomic force microscope.Materials and methods : Twelve teeth blocks from freshly extracted premolars for orthodontic treatment were selected . The study samples were divided into three groups according to type of storage media :A-egg white , B- probiotic yogurt , and C-bovine milk . All the samples were examined for changes in surface roughness and surface granularity distribution using atomic force microscope, at two periods: baseline, and after 8 hours of immersing in the three types of storage media. Results: Milk group had showed a significant increase in the mean of the roughness values at
... Show MoreBackground: Debonding orthodontic brackets and removal of residual bonding material from the enamel surface include critical steps that may cause enamel damage. The aim of the present study was to evaluate and compare the site of bond failure and enamel surface damage after debonding of three types of esthetic brackets (composite, ceramic, sapphire) bonded with light cure composite and resin-modified glass ionomer adhesive. Materials and methods: Seventy two maxillary premolars teeth were divided into three groups each group consisted of 24 teeth according to the type of brackets. Each group was subdivided into two subgroups (12 teeth for each) according to the bonding material that was used. After 7 days of bonding procedure, the brackets
... Show MoreUrinary tract infections (UTIs) mean microbial pathogens in the urethra or bladder (lower urinary tract). Important risk factors for recurrent UTI include obstruction of the urinary tract, use of a bladder catheter or a suppressed immune system. This study aims to isolate and identify bacteria from patients with TCC-bladder cancer or patients with a negative cystoscope and estimate antibiotic susceptibility patterns and evaluate some of the virulence factors. From a total of 62 patients with TCC-BC or negative cystoscope, only 35 favorable bacterial growths were obtained, including Escherichia coli (UPEC), a significant bacterial isolate, and Stenotrophomonas maltophilia. The percentage of multi drug-resistance bacteria
... Show MoreBackground In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
A hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show MoreEnhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce
... Show More