Background: This study was conducted to assess the effect of sonic activation and bulk placement of resin composite in comparison to horizontal incremental placement on the fracture resistance of weakened premolar teeth. Materials and method: Sixty sound human single-rooted maxillary premolars extracted for orthodontic purposes were used in this study. Teeth were divided into six groups of ten teeth each: Group 1 (sound unprepared teeth as a control group), Group 2 (teeth prepared with MOD cavity and left unrestored), Group 3 (restored with SonicFill™ composite), Group 4 (restored with Quixfil™ composite), Group 5 (restored with Tertic EvoCeram® Bulk Fill composite) and Group 6 (restored with Universal Tetric EvoCeram® composite using horizontal incremental layering technique). Standardized class II MOD cavity was prepared in all teeth except (group 1).After finishing the restorative procedure of each group according to the manufacturer's instructions, all teeth were stored in deionized distilled water in an incubator at 37°C for seven days.All specimens were subjected to compressive axial loading until fracturein a universal testingmachine.Specimens were examined by a stereomicroscope at a magnification of (20X) to evaluate the mode of fracture . Results: The results of this study revealed that the control group exhibited the highest fracture resistance compared to all prepared teeth groups (restored or unrestored) and the differences were statistically highly significant (P<0.01), except with group 3 (which was restored with SonicFill™ composite) where the difference was statistically significant only (P < 0.05).Additionally the results of this study revealed that the prepared unrestored teeth (Group 2) exhibited the lowest fracture resistance compared to all restored groups and the differences were statistically highly significant (P<0.01). Meanwhile, among the restored teeth groups, teeth restored with SonicFill™ composite (group 3) exhibited the highest fracture resistance as compared with all other restored groups and the difference was statistically highly significant (P<0.01). On the other hand, no statistically significant differences in fracture resistance were found among groups 4, 5 and 6, which were restored with Quixfil™ composite, Tetric EvoCeram® Bulk Fill composite and Universal Tetric EvoCeram® composite, respectively (P > 0.05). Group 3and Group 5 showed mostly mixed mode of failure, while Group 4 showed mostly adhesive mode of failure. On the other hand Group 6 teeth showed different modes of failure. Conclusions: SonicFill™ composite can be considered as a viable treatment modality for the restoration of weakened maxillary premolar teeth. On the other hand, the time-consuming incremental layering technique can be substituted with bulk filling, using bulk fill materials (Quixfil™ and Tetric EvoCeram® Bulk Fill) for reinforcement ofweakened maxillary premolars.
Poly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free
To decrease the dependency of producing high octane number gasoline on the catalytic processes in petroleum refineries and to increase the gasoline pool, the effect of adding a suggested formula of composite blending octane number enhancer to motor gasoline composed of a mixture of oxygenated materials (ethanol and ether) and aromatic materials (toluene and xylene) was investigated by design of experiments made by Mini Tab 15 statistical software. The original gasoline before addition of the octane number blending enhancer has a value of (79) research octane number (RON). The design of experiments which study the optimum volumetric percentages of the four variables, ethanol, toluene, and ether and xylene materials leads
... Show MoreIn this study, oxidative desulfurization of dibenzothiophene (DBT) with H2O2 as an oxidant was studied, whereas the catalyst used was zirconium oxide supported on Activated carbon (AC). Zirconium oxide (ZrO2) was impregnated over prepared activated carbon (AC) and characterized by various techniques such as XRD, FTIR, BET, SEM, and EDX. This composite was used as a heterogeneous catalyst for oxidation desulfurization of simulated oil. The results of this study showed that ZrO2/AC composite exhibited significant catalytic activity and stability, effectively lowering sulfur content under mild conditions. Factors such as reaction temperature (30, 40, 50, 60°C), time (5, 10, 15,20,30,60, 80 100 min), catalyst dose (0.3, 0.5,
... Show MoreIn this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreAluminum Metal Matrix Composites (ALMMCs) was prepared by using stir casting technique for AA 7075 aluminum alloy as a matrix reinforced with SiC particles at various percentages (3, 6, 9 and 12 wt. % ) and 75µm in grain size. The prepared composite material can be used for many applications such as aerospace, automobiles and many industrial sectors. Abrasive wear test was carried out by two stages: the first stage was done by changing the emery papers at various grit sizes 180, 320, 500, and 1000µm with constant applied load 15N. While the second stage was carried out by changing the applied loads 5, 10, 15, 20 and 25N with constant emery paper at 320 µm grit size. Microstructure examination, hardness test and roughn
... Show MoreConventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show MoreThe educational service industry is one of the most negatively affected industries by the spread of the COVID-19 pandemic. Government agencies have taken many measures to slow its spread, and then restrict movement and gatherings and stop recreational activities. Furthermore, the repercussions of the curfew had a significant impact due to the interruption in actual attendance for students and employees, and the severity of the Covid-19 crisis and its (economic, social, security, humanitarian and behavioral) effects on all societies and work sectors is no secret to anyone. Iraq, like other countries, was also affected by the negative impact of Covid-19 pandemic in all fields of institutional work, especially public fields, and specifically t
... Show More