Background: evaluate the effects of three different intracoronal bleaching agents on the shear bond strengths (SBS) and failure site of stainless steel and monocrystalline (sapphire) orthodontic brackets bonded to endodontically treated teeth using light cured orthodontic adhesive in vitro. Materials and methods: Eighty extracted sound human upper first premolars were selected, endondontically treated and randomly divided equally (according to the type of the brackets used) into two main groups (n = 40 per group). Each main group were subdivided (according to the bleaching agent used) into four subgroups 10 teeth each; as following : control (un bleached) group, hydrogen peroxide group (Hp) 35%, carbamide peroxide group (CP) 37% group and sodium perborate (SP) group . The bleaching process was applied three times (4 days intervals) sequentially and the bleached teeth were stored in artificial saliva four weeks before bonding. Orthodontic brackets were bonded with a light cure composite resin and cured with LED light. After passing 24 hours of bonding procedure, the brackets were debonded by a Tinius-Olsen universal testing machine, to measure the shear bond strength. After debonding, each bracket base and the corresponding tooth surface were examined using a stereomicroscope and their Adhesive Remnant Index (ARI) was recorded. Results: The ANOVA test showed that the SBS of stainless brackets was significantly reduced by intracorornal bleaching agents. Furthermore, LSD showed no significant difference in SBS between the three types of bleaching agents used in stainless steel group. Whilst for sapphire group, the results The ANOVA test showed no significant difference in SBS between the bleached groups and the control group. Chi-square comparison no significant difference in failure site between bleached and control groups in both brackets types used. Conclusion: The effect of intracoronal bleaching on SBS was reduced SBS of stainless steel and not for sapphire. However, the intracoronal bleaching had no effect on the failure site of orthodontic brackets used.
Background: Malnutrition in human life may adversely affect various aspects of growth at different stages of life. Teeth are particularly sensitive to malnutrition. Malnutrition may affect odontometric measurement involving tooth size dimensions. The aim of this study is to estimate the effect of nutrition on teeth size dimension measurements among children aged 5 years old. Materials and methods: This study was conducted among malnourished group in comparison to well-nourished group matching with age and gender. The present study included 158 children aged 5 years (78 malnourished and 80 well-nourished). The assessment of nutritional status was done by using three nutritional indicators, namely Height-for-age, Weight-for-age and Weight-fo
... Show MoreIn this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t
... Show MoreIn this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of this
... Show MoreThe percent work was designed to determine the effect of ginger plant aqueous extract on function and histological structure of kidney in mice treated with carbon tetrachloride (CCl4). Ginger plant caused a protective effect against CCl4 induced kidney damage and improved the kidney weight and biochemical parameters including urea, uric acid and creatinine. The ginger plant has a protective effect against injury in the kidney of mice treated with CCL4, because the ginger plant protects the tissues of kidney from toxic effect of CCL4. The kidney of CCL4 treated mice showed many histological alterations in the kidney included: atrophy, vascular degeneration and hemorrhage, death cell, degeneration of epithelial cells, destruction of basement
... Show MoreThe advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w
... Show MoreThe present work deals with the performance of screw piles constructed in gypseous soil of medium relative density; such piles are extensively used in piles foundations supported structures subjected to axial forces. The carrying capacity and settlement of a single screw pile model of several diameters (20, 30, and 40) mm inserted in gypseous soil is investigated in the present study. The gypsum content of soil used in tests was 40%. The bedding soil used in tests was prepared by raining technique with a relative density of 40%. A physical model was manufactured to demonstrate the tests in the laboratory. The model of screw pile has been manufactured of steel with a total length of 50