Background: The figure for the clinical application of computed tomography have been increased significantly in oral and maxillofacial field that supply the dentists with sufficient data enables them to play a main role in screening osteoporosis, therefore Hounsfield units of mandibular computed tomography view used as a main indicator to predict general skeleton osteoporosis and fracture risk factor. Material and Methods: Thirty subjects (7 males &23 females) with a mean age of (60.1) years underwent computed tomographic scanning for different diagnostic assessment in head and neck region. The mandibular bone quality of them were determined through Hounsfield units of CT scan images and were correlated with the bone mineral density values obtained from t-scores of lumbar spine using dual x-ray absorptiometry scans (DEXA). Results: There was a highly signifi¬cant positive correlation [p-value 0.000 (HS)] of bone mineral density that measured by t-score of dual x-ray absorptiometrical scan and Hounsfield units with very strong relation in measuring the bone density (r test) = 0.969, this close relation lead to predict osteoporosity and the chance of fracture occurrence using a statistical equation that classified the patients as osteoporotic. Conclusion: Hounsfield units obtained from computed tomography scans that are made for any purposes can provide an alternative clinical parameter to predict osteoporosis at no additional cost to the patient and no additional radiation.
In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show MoreImage pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM
... Show MoreAmong the different passive techniques heat pipe heat exchanger (HPHE) seems to be the most effective one for energy saving in heating ventilation and air conditioning system (HVAC). The applications for nanofluids with high conductivity are favorable to increase the thermal performance in HPHE. Even though the nanofluid has the higher heat conduction coefficient that dispels more heat theoretically but the higher concentration will make clustering .Clustering is a problem that must be solved before nanofluids can be considered for long-term practical uses. Results showed that the maximum value of relative power is 0.13 mW at nanofluid compared with other concentrations due to the low density of nanofluid at this concentration. For highe
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreThis paper reports a fiber Bragg grating (FBG) as a biosensor. The FBGs were etched using a chemical agent,namely,hydrofluoric acid (HF). This implies the removal of some part of the cladding layer. Consequently, the evanescent field propagating out of the core will be closer to the environment and become more sensitive to the change in the surrounding. The proposed FBG sensor was utilized to detect toxic heavy metal ions aqueous medium namely, copper ions (Cu2+). Two FBG sensors were etched with 20 and 40 μm diameters and fabricated. The sensors were studied towards Cu2+ with different concentrations using wavelength shift as a result of the interaction between the evanescent field and copper ions. The FBG sensors showed
... Show MoreCredit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c
... Show MoreThe increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show More