Background: Antibacterial action of root canal filling is an important factor for successful root canal treatment, so the aim of the study was to identify and to compare the antimicrobial effect of new sealer (GuttaFlow) to commonly used endodontic sealers (AH Plus, Apexit and EndoFill) against four endodontic microbes. Materials and methods: Twenty patients aged (30-40) years with infected root canals were selected. Four types of microorganisms were isolated from root canals (E faecalis, Staphylococcus aureus, E coli and Candida albicans) and cultured on Mueller Hinton agar Petri-dishes. After identification and isolation of bacterial species, agar diffusion method was used to assess the antibacterial action of four contemporary endodontic sealers used in root canal obturation (AH Plus, Apexit, EndoFill and GuttafFlow). Four wells measuring (5mm depth and 4mm diameter) were created in each Petri dish and sealer was applied into them incubated overnight at 37 C° for bacterial species and 48 hr. at 37 C° for Candida albicans prior to determination of results. Zones of inhibition (no growth of bacteria) were examined around the wells containing sealer & diameters of the zones were measured in mm. The mean of inhibition zones for each group was measured and statistically analyzed among groups using ANOVA and between groups using LSD tests. Results: There was a highly significant difference (P<0.001) among all the tested groups. EndoFill showed the maximum antibacterial action against tested microorganisms. GuttaFlow showed moderate to weak antimicrobial effect, Apexit had weak effect, while AH Plus had no antibacterial action. Conclusion: All the tested materials except AH Plus had antibacterial efficacy against E faecalis, Staphylococcus aureus, E coli and Candida albicans. EndoFill had favorable results among tested sealers and E faecalis was the most resistant bacteria, but none of the materials totally inhibited microbial growth. Thus, endodontic treatment must be performed under aseptic conditions.
The main challenge of military tactical communication systems is the accessibility of relevant information on the particular operating environment required for the determination of the waveform's ideal use. The existing propagation model focuses mainly on broadcasting and commercial wireless communication with a highs transceiver antenna that is not suitable for numerous military tactical communication systems. This paper presents a study of the path loss model related to radio propagation profile within the suburban in Kuala Lumpur. The experimental path loss modeling for VHF propagation was collected from various suburban settings for the 30-88 MHz frequency range. This experiment was highly affected by ecological factors and existing
... Show MoreThe response of floating stone columns of different lengths to diameter ratio (L/D = 0, 2, 4, 6, 8, and 10) ratios exposed to earthquake excitations is well modeled in this paper. Such stone column behavior is essential in the case of lateral displacement under an earthquake through the soft clay soil. ABAQUS software was used to simulate the behavior of stone columns in soft clayey soil using an axisymmetric finite element model. The behavior of stone column material has been modeled with a Drucker-Prager model. The soft soil material was modeled by the Mohr-Coulomb failure criterion assuming an elastic-perfectly plastic behavior. The floating stone columns were subjected to the El Centro earthquake, which had a magnitude of 7.1 an
... Show MoreOptimized Link State Routing Protocol (OLSR) is an efficient routing protocol used for various Ad hoc networks. OLSR employs the Multipoint Relay (MPR) technique to reduce network overhead traffic. A mobility model's main goal is to realistically simulate the movement behaviors of actual users. However, the high mobility and mobility model is the major design issues for an efficient and effective routing protocol for real Mobile Ad hoc Networks (MANETs). Therefore, this paper aims to analyze the performance of the OLSR protocol concerning various random and group mobility models. Two simulation scenarios were conducted over four mobility models, specifically the Random Waypoint model (RWP), Random Direction model (RD), Nomadic Co
... Show MoreOptimized Link State Routing Protocol (OLSR) is an efficient routing protocol used for various Ad hoc networks. OLSR employs the Multipoint Relay (MPR) technique to reduce network overhead traffic. A mobility model's main goal is to realistically simulate the movement behaviors of actual users. However, the high mobility and mobility model is the major design issues for an efficient and effective routing protocol for real Mobile Ad hoc Networks (MANETs). Therefore, this paper aims to analyze the performance of the OLSR protocol concerning various random and group mobility models. Two simulation scenarios were conducted over four mobility models, specifically the Random Waypoint model (RWP), Random Direction model (RD), Nomadic Co
... Show MoreThe experiment was conducted at the plant tissue culture laboratory of the Department of Horticulture and Garden Engineering College of Agricultural Engineering Sciences, University of Baghdad, in order to study the effect of some growth regulators on propagation an stimulation production of volatile oil compounds of rosemary plant Rosmarinus officinlis using two vegetative parts (apical and lateral buds). Factorial experiment was implemented in completely randomized design with twenty replications. The results indicated that culturing the apical meristem on the medium Murashige and Skoog (MS) media with 0.5 mg.l-1 (BA) with 0.1 mg.l-1 of NAA gave the highest response rate of 100%. As for the doubling stage, the levels of BAA and IAA (Indol
... Show MoreBackground: Gotu Kola (Centella asiatica) has been used as a traditional medicine for many years to cure different kinds of diseases. Studies have been reported that Gotu Kola extracts might be used as a cure for oral diseases such as periodontal disease. In the present study, Gotu Kola leaves extracted with water will be used to evaluate its effect on some microorganisms living in the human saliva using minimum inhibitory concentration (MIC) method. Material and Method:Gotu Kola fresh leaves extract have been used with water as a solvent, a rotary evaporator was used to separate the solvent from the extract. The following microorganisms: Streptococci, Lactobacilli, and Staphylococcus aureus have been isolated fromthe Saliva of ten voluntee
... Show MoreNew nitrone and selenonitrone compounds were synthesized. The condensation method between N-(2-hydroxyethyl) hydroxylamine and substituted carbonyl compounds such as [benzil, 4, 4́-dichlorobenzil and 2,2́ -dinitrobenzil] afforded a variety of new nitrone compounds while the condensation between N-benzylhydroxylamine and substituted selenocarbonyl compounds such as [di(4-fluorobenzoyl) diselenide and (4-chlorobenzoyl selenonitrile] obtained selenonitrone compounds. The condensation of N-4-chlorophenylhydroxylamine with dibenzoyl diselenide obtained another type of selenonitrone compounds. The structures of the synthesized compounds were assigned based on spectroscopic data (FT-IR,
... Show MoreThree mesoporous silica with different functional group were prepared by one-step synthesis based on the simultaneous hydrolysis and condensation of sodium silicate with organo - silane in the presence of template surfactant polydimethylsiloxane - polyethyleneoxide (PDMS - PEO). The prepared materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM) and nitrogen adsorption/desorption experiments. The results indicate that the preparation of methyl and phenyl functionalized silica were successful and the mass of methyl and phenyl groups bonded to the silica structure are 15, 38 mmol per gram silica. The average diameter of the silica particles are 103.51,
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show More