Background: This in vitro study was carried out to evaluate the effect of various endodontic irrigants (sodium hypochlorite, ethylene diaminetetracetic acid and normal saline) on sealing ability of (Biodentine, mineral trioxide aggregate, and amalgam) used to repair furcal perforations. Material and methods: One hundred and twenty extracted human molars with divergent roots were used in this study. A standard root canal access cavity was prepared in each tooth and furcal perforation was made and was standardized by using k file size 100 instrument to get a perforation of (1.32mm) in diameter .The teeth were randomly divided in to three groups of 40 teeth according to the type of material used to repair the perforations (Group A: The furcal perforations were repaired with Biodentine, Group B: The furcal perforations were repaired with MTA ,Group C: The furcal perforations were repaired with Amalgam). Each group was then subdivided into 4 subgroups according to irrigation regimens applied over the repair site (Subgroup 1: without irrigation, Subgroup 2: the pulp chamber was gently irrigated with 10 mL 5.25% Sodium hypochlorite for 10 minutes, Subgroup 3: Pulp chamber was gently irrigated with 10 mL 17% Ethylene Diaminetetracetic acid for 10 minutes, Subgroup 4: pulp chamber was gently irrigated with 10 mL normal saline for 10 minutes. Each tooth was coated with two layers of nail varnish and then sticky wax except 1 to 2 mm around the perforation site. Each tooth was placed in glass vial containing 3 ml of buffered Methylene blue dye at (37°C, pH 7) and kept in an incubator for 72 hour at 100% humidity. After dye application, the teeth were washed in running water for 5 min. Each tooth was sectioned longitudinally in a buccolingual direction. Results: The results showed that group A has least mean of dye penetration and the difference was highly significant with group C and non-significant with group B.Saline and NaOCl increase the sealing of all groups while EDTA significantly increased the dye penetration of Biodentine and MTA respectively. Conclusions: Biodentine has the best sealing ability of the tested materials while amalgam showed the highest dye penetration of all tested materials. Saline and NaOCl increase the sealing ability of Biodentine and MTA where as EDTA decreased the sealing efficacy of MTA and Biodentine.
This study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show MoreThis paper presents the first data for bremsstrahlung buildup factor (BBUF) produced by the complete absorption of Y-91 beta particles in different materials via the Monte Carlo simulation method. The bremsstrahlung buildup factors were computed for different thicknesses of water, concrete, aluminum, tin and lead. A single relation between the bremsstrahlung buildup factor BBUF with both the atomic number Z and thickness X of the shielding material has been suggested.
In most manufacturing processes, and in spite of statistical control, several process capability indices refer to non conformance of the true mean (µc ) from the target mean ( µT ), and the variation is also high. In this paper, data have been analyzed and studied for a blow molded plastic product (Zahi Bottle) (ZB). WinQSB software was used to facilitate the statistical process control, and process capability analysis and some of capability indices. The relationship between different process capability indices and the true mean of the process were represented, and then with the standard deviation (σ ), of achievement of process capability value that can reduce the standard deviation value and improve production out of theoretical con
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi
... Show MoreWater pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreIn this study, the potential of adsorption of amoxicillin antibiotic (AMOX) from aqueous solutions using prepared activated carbon (AC) was studied. The used AC was prepared from an inexpensive and available precursor (sunflower seed hulls (SSH)) and activated by potassium hydroxide (KOH). The prepared AC was examined for its ability to remove AMOX from aqueous contaminated solutions and characterized with the aid of N2 -adsorption/desorption isotherm Brunauer–Emmett– Teller, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier-transform infrared. Zeta potential of the prepared activated carbon from sunflower seed hulls (SSHAC) were studied in relation to AMOX adsorption. The physical and chemical propert
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re