Background: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth except the third molar while the radiographic analysis using CBCT was recorded on the Ramfjord teeth, the unit of measurement was from cement-enamel junction to alveolar crest distance (CEJ-Ac distance) per site in millimeters. Results: The results obtained were a non significant difference for PLI, a significant difference of mean of GI between young smokers and non smokers. There was a highly significant difference in the general mean of CEJ-Ac distance between both groups. There was a significant difference between maxillary and mandibular teeth, a non significant difference between right and left sides among young smokers and non smokers. Conclusion: The CBCT device plays an important role in detection the incipient form of periodontitis among young smokers and non-smokers, so we concluded that there is a highly significant difference in the general mean CEJ-Ac distance between young smokers and non smokers with increase distance in the maxillary teeth than that in the mandibular teeth.
With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreThis paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.
Beta thalassemia major (BTM) is a genetic disorder that has been linked to an increased risk of contracting blood-borne viral infections, primarily due to the frequent blood transfusions required to manage the condition. One such virus that can be transmitted through blood is the Human Parvovirus B19 (B19V). The aim of this study was to investigate the frequency and molecular detection of B19V. This study included 60 blood donors as controls and 120 BTM patients. B19V was identified by serology, which measured B19-IgG and B19-IgM antibodies. Nested Polymerase Chain Reaction (nPCR) was employed to target the VP1/VP2 structural proteins. The results showed that B19V seropositivity represents 27.5% (33 out of 120) in BTM patients, and
... Show MoreBackground: Gingival crevice fluid (GCF) is a mixture of substances derived from serum, leukocytes, and structural cells of periodontium and oral bacteria. These substances possess a great potential for serving as indicators of periodontal disease and healing after therapy the main purpose of this study was to find if there is a difference in albumin concentration between healthy and diseased periodontal tissues and to compare between diseased group according to pocket depth Materials and methods: total sample composed of 60 pockets found in 35 patients all of them had no history of any systemic disease, The samples were divided in to three main group that include two diseased groups divided according to the depth of the periodontal pocket
... Show MoreConvolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThe aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreThe power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such ha
... Show More