Background: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth except the third molar while the radiographic analysis using CBCT was recorded on the Ramfjord teeth, the unit of measurement was from cement-enamel junction to alveolar crest distance (CEJ-Ac distance) per site in millimeters. Results: The results obtained were a non significant difference for PLI, a significant difference of mean of GI between young smokers and non smokers. There was a highly significant difference in the general mean of CEJ-Ac distance between both groups. There was a significant difference between maxillary and mandibular teeth, a non significant difference between right and left sides among young smokers and non smokers. Conclusion: The CBCT device plays an important role in detection the incipient form of periodontitis among young smokers and non-smokers, so we concluded that there is a highly significant difference in the general mean CEJ-Ac distance between young smokers and non smokers with increase distance in the maxillary teeth than that in the mandibular teeth.
Non-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in d
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
KA Hadi, AH Asma’a, IJONS, 2018 - Cited by 1
Methylotrophs bacteria are ubiquitous, and they have the ability to consume single carbon (C1) which makes them biological conversion machines. It is the first study to find facultative methylotrophic bacteria in contaminated soils in Iraq. Conventional PCR was employed to amplify MxaF that encodes methanol dehydrogenase enzyme. DNA templates were extracted from bacteria isolated from five contaminated sites in Basra. The gene specific PCR detected Methylorubrum extorquens as the most dominant species in these environments. The ability of M. extorquens to degrade aliphatic hydrocarbons compound was tested at the laboratory. Within 7 days, gas chromatographic (GC) studies of remaining utilize
... Show MoreThis research deals with the most important heritage in Iraq, which are the Iraqi marshes, especially Abu Zarag marsh in Al-Nasiriyah city south of Iraq. The research is divided into two parts. The first part deals with evaluating the water quality parameters of Abu Zarag marsh for the period from December 2018 to April 2019 which is the flooding season. The parameters are Temperature, pH, Electrical Conductivity, Total Dissolved Solids, Alkalinity, Total Hardness, Turbidity, Dissolved Oxygen, Sulfate, Nitrate. The second part is a comparison between the water quality parameters during the recent period with the same period during the previous years from 2014 to 2019. The results are
A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.