Background: The use of osseointegrated fixtures in dentistry has been demonstrated both histologically and clinically to be beneficial in providing long term oral rehabilitation in completely edentulous individual. Most patients suffer from denture instability; particularly with mandibular prosthesis, the use of dental implant will be benefit significantly from even a slight increase in retention. The concept of implanting two to four fixtures in a bony ridge to retain a complete denture prosthesis appealing therefore, as retention, stability and acceptable economic compromise to the expanse incurred with the multiple fixture supported fixed prosthesis. Materials and methods in this study the sample were eight patients selected from a hospital of specialized surgery, these patient were wearing a mandibular implant retained over denture for two years these patients having MIR-OD with Bar-clip, ball-cup and O- ring attachments. Preparative radiography was obtained for this patient from the center .these radiograph was taken to the patient at time of insertion. The second radiograph image was taken to the patient after two years of function with prosthesis. .the scanned images were transfer to special folder in a computer then analysis of bone loss done using Dimax software. After that an accurate calibrations of crestal bone measurement were analyzed for both groups of Radiography. Results it was appeared that the amount of bone loss in ball and bar designs (of mandibular Implant retained overdenture) were within the criteria of successful rate of bone loss during the period of examination, and there was statistically significant difference between both types of anchorage system. Conclusions The amount of bone loss was 0.1 mm after two years follow up, and it was within the acceptable limits of bone lose. A significant difference appeared between both designs of MIR-OD, Ball and bar designs.
This paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreThis work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy disper
... Show MoreLower extremity exoskeletons can assist with performing particular functions such as gait assistance, and physical therapy support for subjects who have lost the ability to walk. This paper presents the analysis and evaluation of lightweight and adjustable two degrees of freedom, quasi-passive lower limb device to improve gait rehabilitation. The exoskeleton consists of a high torque DC motor mounted on a metal plate above the hip joint, and a link that transmits assistance torque from the motor to the thigh. The knee joint is passively actuated by spring installed parallel with the joint. The action of the passive component (spring) is combined with mechanical output of the motor to provide a good control on the designed exoskeleton whi
... Show MorePurpose: Despite the high clinical accuracy of dynamic navigation, inherent sources of error exist. The purpose of this study was to improve the accuracy of dynamic navigated surgical procedures in the edentulous maxilla by identifying the optimal configuration of intra-oral points that results in the lowest possible registration error for direct clinical implementation. Materials and methods: Six different 4-area configurations were tested by 3 operators against positive and negative controls (8-areas and 3-areas, respectively) using a skull model. The two dynamic navigation systems (X-Guide® and NaviDent®) and the two registration methods (bone surface tracing and fiducial markers) produced four registration groups. The accuracy of the
... Show MoreThis study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand