Background: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has a substantial influence on the hematological system and hemostasis, thus deviations from normal levels of laboratory tests, including the blood and saliva test show that specific testing for detecting COVID-19 infection is required. Conclusions: The blood and saliva tests aid in the clinical monitoring of the patient's health. It has advantages such as the following: it has non-invasive properties, low cost, and good stability, addition to minimum risk of infection transport.
Matching between wind site characteristics and wind turbine characteristics for three selected sites in Iraq was carried out. Site-turbine matching for potential wind power application in Iraq has not yet been well reported on. Thus, in this study, five years’ wind speed data for sites located in Baghdad (33.34N, 44.40E), Nasiriyah (31.05N, 46.25E), and Basrah (30.50N, 47.78E) were collected. A full wind energy analysis based on the measured data, Weibull distribution function, and wind turbine characteristics was made. A code developed using MATLAB software was used to analyse the wind energy and wind turbines models. The primary objective was to achieve a standard wind turbine-site matching based on the capacity factor. Another matching
... Show MoreProviding stress of poetry on the syllable-, the foot-, and the phonological word- levels is one of the essential objectives of Metrical Phonology Theory. The subsumed number and types of syllables, feet, and meters are steady in poetry compared to other literary texts that is why its analysis demonstrates one of the most outstanding and debatable metrical issues. The roots of Metrical Phonology Theory are derived from prosody which studies poetic meters and versification. In Arabic, the starting point of metrical analysis is prosodic analysis which can be attributed to يديهارفلا in the second half of the eighth century (A.D.). This study aims at pinpointing the values of two metrical parameters in modern Arabic poetry. To
... Show MoreThe root-mean square-radius of proton, neutron, matter and charge radii, energy level, inelastic longitudinal form factors, reduced transition probability from the ground state to first-excited 2+ state of even-even isotopes, quadrupole moments, quadrupole deformation parameter, and the occupation numbers for some calcium isotopes for A=42,44,46,48,50 are computed using fp-model space and FPBM interaction. 40Ca nucleus is regarded as the inert core for all isotopes under this model space with valence nucleons are moving throughout the fp-shell model space involving 1f7/2, 2p3/2, 1f5/2, and 2p1/2 orbits. Model space is used to present calculations using FPBM intera
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3 rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM) in M technique wh
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet
... Show MoreThe effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended
... Show MoreThe present study is considered the first on this sector of the Tigris River after 2003. It is designed for two aims, the first is to demonstrate the seasonal variations in physicochemical parameters of Tharthar-Tigris Canal and Tigris River; the second is to explain the possible effects of canal on some environmental properties in the Tigris River. Water samples were being collected monthly. Six sampling sites were selected, two on Tharthar Canal and four along the Tigris River, one before the confluence as a control site and the others downstream the confluence with the canal. For a period from January to December 2020, nineteen physicochemical parameters were investigated including air and water temperature, turbidity, electrical cond
... Show MoreThis study produces an image of theoretical and experimental case of high loading stumbling condition for hip prosthesis. Model had been studied namely Charnley. This model was modeled with finite element method by using ANSYS software, the effect of changing the design parameters (head diameter, neck length, neck ratio, stem length) on Charnley design, for stumbling case as impact load where the load reach to (8.7* body weight) for impact duration of 0.005sec.An experimental rig had been constructed to test the hip model, this rig consist of a wood box with a smooth sliding shaft where a load of 1 pound is dropped from three heights.
The strain produced by this impact is measured by using rosette strain gauge connected to Wheatstone
The characteristics of sulfur nanoparticles were studied by using atomic force microscope (AFM) analysis. The atomic force microscope (AFM) measurements showed that the average size of sulfur nanoparticles synthesized using thiosulfate sodium solution through the extract of cucurbita pepo extra was 93.62 nm. Protecting galvanized steel from corrosion in salt media was achieved by using sulfur nanoparticles in different temperatures. The obtained data of thermodynamic in the presence of sulfur nanoparticles referred to high value as compares to counterpart in the absence of sulfur nanoparticles, the high inhibition efficiency (%IE) and corrosion resistance were at high temperature, the corrosion rate or weig
... Show More