Background: Bone defect healing is a multidimensional procedure with an overlapping timeline that involves the regeneration of bone tissue. Due to bone's ability to regenerate, the vast majority of bone abnormalities can be restored intuitively under the right physiological conditions. The goal of this study is to examine the immunohistochemistry of bone sialoprotein in order to determine the effect of local application of bone sialoprotein on the healing of a rat tibia generated bone defect. Materials and Methods: In this experiment, 48 albino male rats weighing 300-400 grams and aged 6-8 months will be employed under controlled temperature, drinking, and food consumption settings. The animals will be subjected to a surgical procedure on the medial side of the tibiae bone, with the bone defect repaired with absorbable hemostatic material in the control group (12 rats). The experimental group (12 rats) will be treated with local administration of 30 μl bone sialoprotein fixed by absorbable hemostatic sponge. After surgery, the rats will be slaughtered at 7, 14, and 28 days (four rats for each period). Results: Immunohistochemical analysis of bone sialoprotein by stromal cells reveal a substantial difference between the bone sialoprotein group and the control group. Conclusion: The study concludes that local application of bone sialoprotein could be a successful therapeutic treatment for bone injuries; these findings are encouraging for future clinical use.
Length of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.
Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreIn this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy. X-ray diffra
... Show MoreThis study illustrates the impact of non-thermal plasma (Cold Atmospheric Plasma CAP) on the lipids blood, the study in vivo. The lipids are (cholesterol, HDL-Cholesterol, LDL-Cholesterol and triglyceride) are tested. (FE-DBD) scheme of probe diameter 4cm is used for this purpose, and the output voltage ranged from (0-20) kV with variable frequency (0-30) kHz. The effect of non-thermal atmospheric plasma on lipids were studied with different exposure durations (20,30) sec. As a result, the longer plasma exposure duration decreases more lipids in blood.
Positron annihilation lifetime (PAL) technique has been employed to
study the microstructural changes of polyurethane (PU), EUXIT 101
and epoxy risen (EP), EUXIT 60 by Gamma-ray irradiation with the
dose range (95.76 - 957.6) kGy. The size of the free volume hole and
their fraction in PU and EP were determined from ortho-positronium
lifetime component and its intensity in the measured lifetime spectra.
The results show that the irradiation causes significant changes in the
free volume hole size (Vh) and the fractional free volume (Fh), and
thereby the microstructure of PU and EP. The results indicate that
the γ-dose increases the crystallinity in the amorphous regions of PU
and increas
Zinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift,
... Show MoreOptical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a
... Show MoreIn this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability. The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) image
... Show MoreThis work aimed to prepare and study the characteristic feature of lead nanoparticles (PbNPS) and follow its effects on some physiological aspects in rats.PbNPS was prepared by laser ablation of pure lead mass with a pulse of 500 and 100 mJ of energy. The results indicated that the wavelength was approximately 196 and the concentration was reported at 53,8967 mg / L. AFM, as the average diameter has been estimated at 69.93 nm. EFSEM shows the spherical shape of the particle.The experimental animals (rats) were divided into two groups, with seven rats for each one. The first group was a control and the second group was injected with 1 milliliter of PbNPS (53.8673 mg/l) per day for 45 days. Bioaccumulated lead ( in liver, spleen kidney and
... Show More