Background: One of the recommended methods for reducing aerosol contamination during the daily regular usage of high-speed turbine and ultrasonic scaling is the use of preprocedural mouth rinse. Several agents have been investigated as a preprocedural mouth rinse. Chlorhexidine significantly reduce the viable microbial content of aerosol when used as a preprocedural rinse. Studies have shown that cetylpridinum chloride (CPC) mouthwash is equally effective as chlorhexidine in reducing plaque and gingivitis. This study compared the effect of 0.07% CPC to 0.2% chlorhexidine gluconate (CHX) as preprocedural mouth rinses in reducing the aerosol contamination by high-speed turbine. Materials and Methods: 36 patients were divided into three groups based on the preprocedural rinse used (0.2% CHX, 0.07% CPC and distilled water). Conservative treatment was done for 20 min. (10 min before rinsing and 10 min after rinsing) in the same closed operatory for all the patients after keeping blood agar plates opened at three standardized locations (patient chest, dentist chest and at 12-inch from patient mouth). Colony forming units (CFUs) on blood agar plates were counted, after incubation at 37°C for 48 hr. Statistical analysis was done with (SPSS version 21(. Results: This study showed that the two antiseptic mouthwashes significantly reduced the bacterial colony forming units (CFUs) in aerosol samples at three plates locations. Chlorhexidine rinses were found to be superior to cetylpridinum chloride when used pre-procedurally in reducing aerolized bacteria. The number of CFUs were higher at the patient’s chest location as compared to other locations. Conclusion: 0.07% CPC and 0.2% CHX were effective as a pre-procedural rinse in reducing CFU count during dental treatment using high-speed turbine.
Structural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi
The aim of the present study is to compare the biochemical action of the three vaccines taken in Iraq: Pfizer Biontech, AstraZeneca Oxford and Sinopharm based on biochemical parameters. Seventy COVID-19 Iraqi patients ( males and females ) were participated in the present study and classified into 7 groups : Gc : COVID-19 patients ( without vaccine ) , Gp1: COVID-19 patients took one dose of Pfizer Biontech, Gp2 : COVID-19 patients took two doses of Pfizer Biontech, Ga1 : patients took one dose of AstraZeneca Oxford vaccine , Ga2: patients took two doses of AstraZeneca Oxford vaccine , Gs1 : patients took one dose of Sinopharm vaccine and Gs2:
... Show MoreThis paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.
In this study, nanocomposites have been prepared by adding
multiwall carbon nanotubes (MWCNTs) with weight ratios (0, 2, 3,
4, 5) wt% to epoxy resin. The samples were prepared by hand lay-up
method. Influence of an applied load before and after immersion in
sodium hydroxide (NaOH) of normality (0.3N) for (15 days) at
laboratory temperature on wear rate of Ep/MWCNTs
nanocomposites was studied. The results showed that wear rate
increases with increasing the applied load for the as prepared and
immersed samples and after immersion. It was also found that epoxy
resin reinforced with MWCNTs has wear rate less than neat epoxy.
The sample (Ep + 5wt% of MWCNTs) has lower wear rate. The
immersion effect in base so
Background: Chronic otitis media (COM) of mucosal or squamous type is a common problem in otolaryngology practice, the active form of COM is characterized by discharge of pus and is treated by antibiotics to start with, the appropriate antibiotic should be prescribed to avoid antibiotic abuse and guarantee good outcome. Objectives:The objective of this study is to identify the causative organisms of active chronic active otitis media both (mucosal, squamous) type and test their sensitivity to various anti- microbial agents &compare with abroad studies.Methods:A prospective study was done on eighty patients, different ages and sexes were taken and carful history and examination was done, examination under microscope was done with carf
... Show MoreThis current study aims to:
1st: The recognizing of Alexithymia level for 6th grade students (Study Specimen) through the next Zero Hypothesis:1. There are no statistically significant differences at (0.05) level between the arithmetic mean of the specimen degrees as a whole and the central assumption for the scale of the lack in emotions expression
2. There are no statistically significant differences at (0.05) level between the arithmetic mean of the male students specimen and the arithmetic meanc of the female students specimen for the scale of Alexithymia.
2nd: ldentification the level of the emotional intelligence among 6th grade students (Study Specimen) through the next Zero Hypothesis:
1) There are no statistically si
In this study, we introduce new a nanocomposite of functionalize graphene oxide FGO and functionalize multi wall carbon nanotube (F-MWCNT-FGO).The formation of nanocomposite was confirmed by FT-IR ,XRD and SEM. The magnitude of the dielectric permittivity of the (F-MWCNT-FGO) nanocomposite appears to be very high in the low frequency range and show a unique negative permittivity at frequencies range from 400 Hz to 4000Hz. The ac conductivity of nanocomposite reaches 23.8 S.m-1 at 100Hz.