Background: Esthetic treatment is the options of patient seeking orthodontic treatment. Therefore this study was conducted to measure the concentration of Aluminum, Nickel, Chromium and Iron ions released from combination of monocrysralline brackets with different arch wires immersed in artificial saliva at different duration, to evaluate the corrosion point on different parts of the orthodontic appliances before and after immersion in artificial saliva, and to evaluate the corrosion potential of each group of the orthodontic appliances. Material and methods: Eighty orthodontic sets prepared. Each set represents half fixed orthodontic appliance, from the central incisor to the first molar, for the maxillary arch, each set consisted of molar band, five brackets, half arch wire and ligature elastic.These sets are divided into two groups: Group A: with monocrystalline brackets divided into five subgroups (each subgroup has ten sets), but differ in arch wires, as numbered stainless steel, nickel-titanium, thermally activated, coated stainless steel and coated nickel-titanium arch wires respectively. Group B: with stainless steel brackets divided into three subgroups (also each subgroup has ten sets), but differ in arch wires, as numberedstainless steel, nickel-titanium, and thermally activated arch wires respectively. Used optical microscope to check the corrosion points, and used potentiostat techniques to indicate corrosion rate and tendency. Results: The greatest concentration of Aluminum and nickel ions release during the 1st week in group A, then sharply decreased in the 2nd week. The release of chromium ion released increase with increase intervals, while iron ion released decrease with increase time. Both nickel and chromium ions increase with increase intervals in group B,while iron increase to the maximum at 3rd weeks, then began to degrease. Optical microscope displayed pitting, crevices, and intergranular corrosion. Potentiostat techniques indicated that increase corrosion when used stainless steel and coated nickel titanium than others arch wires with group A, while corrosion increase with nickel titanium than stainless steel arch wires with group B. Conclusions: Non-significant difference in the total nickel, chromium and iron release in group B. Aluminum and iron increase in A4 and A5, while nickel and chromium increase in A1 and A2.The total released amounts of metals ions in both groups were less than the amounts of daily intake.
This study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green
The corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that
... Show MoreThe risk assessment for three pipelines belonging to the Basra Oil Company (X1, X2, X3), to develop an appropriate risk mitigation plan for each pipeline to address all high risks. Corrosion risks were assessed using a 5 * 5 matrix. Now, the risk assessment for X1 showed that the POF for internal corrosion is 5, which means that its risk is high due to salinity and the presence of CO, H2S and POF for external corrosion is 1 less than the corrosion, while for Flowline X2 the probability of internal corrosion is 4 and external is 4 because there is no Cathodic protection applied due to CO2, H2S and Flowline X3 have 8 leaks due to internal corrosion so the hazard rating was very high 5 and could be due to salinity, CO2, fluid flow rate
... Show MoreRotating cylinder electrode (RCE) is used . in weight loss technique , the salinity is 200000 p.p.m, temperatures are (30,5060,7080Co) . the velocity of (RCE) are (500,1500,3000 r.p.m). the water cut (30% , 50%). The corrosion rate of carbon steel increase with increasing rotating cylinder velocity. In single phase flow, an increase im rotational velocity from 500 to 1500 r.p.m, the corrosion rate increase from 6.88258 mm/y to 10.11563 mm/y respectively.
In multiphase flow, an increase in (RCE) from 500 to 1500 r.p.m leads to increase in corrosion rate from 0.786153 to 0.910327 mm/y respectively. Increasing brine concentration leads to increase in corrosion rate at water cut 30%.
In this work, studying the effect of ethylenediamine as a corrosion inhibitor was investigated for carbon steel in aerated HCl solution in range of 0.1-1N under dynamic conditions, i.e., rotational velocity of 400–1200 rpm in the temperature range 35 – 65 ºC. Weight loss method was employed in absence and presence of the inhibitor as an adsorption type in concentration range 1000 – 5000 ppm using rotating cylinder specimens. The experimental results showed that corrosion rate in absence and presence of inhibitor is increased with increasing temperature, rotational velocity and concentration of acid. It is decreased with increasing inhibitor concentration for the whole range of temperature, rotational velocity and concentrati
... Show MoreThis study investigates the potential of biogas recovery from used engine oil (UEO) by co-digestion with animals’ manure, including cow dung (CD), poultry manure (PM), and cattle manure (CM). The experimental work was carried out in anaerobic biodigesters at mesophilic conditions (37°C). Two groups of biodigesters were prepared. Each group consisted of 4 digesters. UEO was the main component in the first group of biodigesters with and without inoculum, whereby a mix of UEO and petroleum refinery oily sludge (ROS) was the component in the second group of biodigesters. The results revealed that for UEO-based biodigesters, maximum biogas production was 0.98, 1.23, 1.93, and 0 ml/g VS from UEO±CD, UEO±CM, UEO±PM, and U
... Show MoreThe purpose of this research was to prepare, characterize, and evaluate the new antimicrobial peptide KSL peptide encapsulated in poly(D,L-lactide-co-glycolide) (PLGA)composite microspheres. KSL was loaded in poly(acryloyl hydroxyethyl) starch (acHES) micropar-ticles, and then the peptide-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction /evaporation method.
KSL-loaded PLGA microspheres were also prepared without the starch hydrogel microparticle microspheres for comparison study. KSL peptide microspheres were characterized for drug content, surface morphology, microspheres size determination, polymers stability , in vitro microspheres degradation and in vitro release. KSL peptide
... Show More