Background: The irradiation of teeth with a laser results in an interaction between the light and the biological constituents of the dental hard substance, which is converted directly into heat.This thermal effect is the cause of the structural and chemical enamel changes.The combined treatment of topical fluoride agent with laser may increase fluoride uptake, and reduce progression of caries-like lesions. The aim of this study was to measure the uptake of the acidulated phosphate fluoride and sodium fluoride to the buccal and lingual caries-like lesion enamel surfaces before and after irradiated by Nd-YAG laser in comparison with matching control group. Materials and methods: The sample consisted of 30 human healthy upper premolar teeth which were stored in 0.1% thymol solution after extracted. Every tooth divided into: buccal and lingual specimen, each specimen has a rectangular window which was divided to right and left halves (120 specimens). The sample was divided into 2groups (60 specimens) for buccal surface, and the same for lingual surface. The caries-like lesion was formed for all groups except control (1) each group treated with either acidulated phosphate fluoride 1.23% or sodium fluoride 2%, (30 specimens) which contain other subgroups, these are: (10 specimens) one half treated with fluoride agent only and another half as control (first group as control (1) without caries-like lesion, and the second group control (2) with caries-like lesion, then de-ionized water only). (10 specimens) treated with fluoride agent then irradiated by Nd-YAG laser; one half with program (1) (short pulse), andanother with program (2) (long pulse). (10 specimens) irradiated by Nd-YAG laser; one half with program (1) and another with program (2) then treated with fluoride agent. The specimens of enamel were sectioned and the fluoride uptake was determined with using fluoride sensitive electrode. Results: There was a significant difference between the buccal and lingual enamel surfaces regarding the fluoride uptake in sound tooth, while a non- significant difference was observed after artificial caries-like lesion formation. Conclusion: Irradiation of Nd-YAG laser program (1) to the buccal and lingual caries-like lesion surfaces of enamel before application of fluoride agents (APF, NaF) was significantly increase fluoride uptake than that of using laser after the application of fluoride agent, as well as from using laser of program (2) after and before the application of fluoride agent, and from using fluoride agent alone in the buccal and lingual surfaces.
Allosteric inhibition of EGFR tyrosine kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies.
A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR
Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the
... Show MoreThis work studies the impact of input machining parameters of Electrical Discharge Machining (EDM) on the machining process performance. Tool steel O1 was selected as the workpiece material, copper as the electrode material, and kerosene as the dielectric medium. Experimental runs have been carried out with a Design of Experiment (DOE) technique. Twenty tests are accomplished with the current range of (18 to 24 Ampere), a pulse duration range of (150 to 200 µs), and a pulse-off time range of (25 to 75 µs). Based upon the experimental study's output results, the EDM parameter's effect (voltage of power supply, discharge current, pulse duration, and pulse pause interval) on the responses of the process represented by sur
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreThe study included adding antimony oxide to mixtures of coating metal surfaces (Enameling), after it was selected ceramic materials used in the coating metal pieces of the type of steel and cast iron in two layers. The first is called a ground coat and the second is a cover coat.
Ceramic materials layer for ground coat have been melted down in
platinum crucible at a temperature of 1200oC to prepare the glass
mixture (Frit). It was coated on metals at a temperature of 780oC for
two minutes, while the second layer was prepared glass mixture
(Frit) at a temperature of 1200oC, but was coated at a temperature of
760oC for two minutes.
Underwent tests crystalline state of powders (Frits) and enameled samples using X-ray di
Background: Studying and investigating the transverse strength(Ts), impact strength(Is), hardness (Hr) and surface roughness(Ra) of conventional and modified autopolymerizing acrylic resin with different weight percentages of biopolymer kraftlignin, after curing in different water temperatures; 40°C and 80°C. Material and Methods: Standard acrylic specimens were fabricated according to ADA specification No.12 for transverse strength, ISO 179 was used for impact testing, Shore D for hardness and profilometerfor surface roughness. The material lignin first dispersed in the monomer, then the powder PMMA is immediately added. Ligninadded in different weight percentages. Then cured using pressure pot (Ivomet) in two temperatures;40°C a
... Show More