Background:SARS-CoV-2 infection has caused a global pandemic that continues to negatively impact human health. A large group of microbial domains including bacteria co-evolved and interacted in complex molecular pathogenesis along with SARS-CoV-2. Evidence suggests that periodontal disease bacteria are involved in COVID-19, and are associated with chronic inflammatory systemic diseases. This study was performed to investigate the association between bacterial loads of Porphyromonas gingivalis and pathogenesis of SARS-CoV-2 infection. Fifty patients with confirmed COVID-19 by reverse transcriptase-polymerase chain reaction, their age ranges between 20-76 years, and 35 healthy volunteers (matched accordingly with age and sex to the patients) participated in this case control study. Oral hygiene status was determined by the simplified oral hygiene index. Blood and saliva samples were obtained from patients and controls, Porphyromonas gingivalis quantification from extracted DNA of blood and saliva samples performed by means of real-time polymerase chain reaction. The present result revealed that the quantity of salivary Porphyromonas gingivalis was significantly higher (p=0.003) in the patients’ group than in the controls group, while there was no significant difference in the number of bacteria in the blood samples between the two groups. Moreover, the number of bacteria in severe cases was higher than that in moderate and mild with no significant differences, and there was a significant increase in the number of bacteria among patients with poor oral hygiene compared to patients with good oral hygiene. This study demonstrated that the high level of salivary Porphyromonas gingivalis in patients increases in number with disease severity, which may indicate that bacterial infections contribute to the spread of the disease.
Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreChronic myeloid leukemia (CML) is a myeloproliferative disorders characterized by formation of Philadelphia chromosome. After disease development, several events may associate with the reduction of anti-tumor immunity. The present study was designed to investigate the immunological profile of innate and adaptive immune response in Iraqi patients with CML. Patients were grouped into untreated (UT), treated (T) with chemotherapy, while another apparently healthy individuals were recruited to represent the control (C) group. Methods: ELISA technique was used to estimate serum levels of GM-CSF, IL-1a, IL-8, IL2, INF-?, IL-4, and IL-10 while SRID was used to estimate serum levels of C4, IgM, IgA, and IgG. Results: Regarding to innate immune resp
... Show MoreMigraine affects more than one billion individuals each year across the world, and is one of the most common neurologic disorders, with a high prevalence and morbidity, especially among young adults and females. Migraine is associated with a wide range of comorbidities, which range from stress and sleep disturbances to suicide. The complex and largely unclear mechanisms of migraine development have resulted in the proposal of various social and biological risk factors, such as hormonal imbalances, genetic and epigenetic influences, as well as cardiovascular, neurological, and autoimmune diseases. Experimental findings suggest an involvement of neuroinflammatory mechanisms in the pathophysiology of migraine. Specifically, preclinical
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreMalaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show MoreMedulloblastomas and ependymomas are the most common malignant brain tumors in children. However genetic abnormalities associated with their development and prognosis remain unclear. Recently two gene fusions, KIAA1549–BRAF and SRGAP3–RAF1 have been detected in a number of brain tumours. We report here our development and validation of RT-RQPCR assays to detect various isoforms of these two fusion genes in formalin fixed paraffin embedded (FFPE) tissues of medulloblastoma and ependymoma. We examined these fusion genes in 44 paediatric brain tumours, 33 medulloblastomas and 11 ependymomas. We detected both fusion transcripts in 8/33, 5/33 SRGAP3 ex10/RAF1 ex10, and 3/33 KIAA1549 ex16/BRAF ex9, meduloblastomas but none in the 11 ep
... Show MoreKE Sharquie, AA Noaimi, MS Younis, BS Al-Sultani, Journal of Cosmetics, Dermatological Sciences and Applications, 2015 - Cited by 8