Background:SARS-CoV-2 infection has caused a global pandemic that continues to negatively impact human health. A large group of microbial domains including bacteria co-evolved and interacted in complex molecular pathogenesis along with SARS-CoV-2. Evidence suggests that periodontal disease bacteria are involved in COVID-19, and are associated with chronic inflammatory systemic diseases. This study was performed to investigate the association between bacterial loads of Porphyromonas gingivalis and pathogenesis of SARS-CoV-2 infection. Fifty patients with confirmed COVID-19 by reverse transcriptase-polymerase chain reaction, their age ranges between 20-76 years, and 35 healthy volunteers (matched accordingly with age and sex to the patients) participated in this case control study. Oral hygiene status was determined by the simplified oral hygiene index. Blood and saliva samples were obtained from patients and controls, Porphyromonas gingivalis quantification from extracted DNA of blood and saliva samples performed by means of real-time polymerase chain reaction. The present result revealed that the quantity of salivary Porphyromonas gingivalis was significantly higher (p=0.003) in the patients’ group than in the controls group, while there was no significant difference in the number of bacteria in the blood samples between the two groups. Moreover, the number of bacteria in severe cases was higher than that in moderate and mild with no significant differences, and there was a significant increase in the number of bacteria among patients with poor oral hygiene compared to patients with good oral hygiene. This study demonstrated that the high level of salivary Porphyromonas gingivalis in patients increases in number with disease severity, which may indicate that bacterial infections contribute to the spread of the disease.
Newly 4-amino-1,2,4-triazole-3-thione ring 2 was formed at position six of 2-methylphenol from the reaction of 6-(5-thio1,3,4-oxadiazol-2-yl)-2-methylphenol 1 with hydrazine hydrochloride in the presence of anhydrase sodium acetate. Seven newly fused heterocyclic compounds were synthesized from compound 2. First fused heterocyclic was 6-(6-(3,5-di-tertbutyl-4-hydroxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)-2-methylphenol 3 synthesized from reaction compound 2 with 3,5-di-tert-butyl-4-hydroxybenzoic acid in POCl3. Reaction compound 2 with bromophencylbromide afford 6-(6-(4-bromophenyl)-5H-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazin-3-yl)-2-methylphenol 4. 6-(6-thio-1,7a-dihydro-[1,2,4] triazolo[3,4-b][1,3,4]-thiadiazol-3-yl)-2
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl) amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones(5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones wassecerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds(5a) showed mild antibacterial activit
... Show MoreIt is widely accepted that early diagnosis of Alzheimer's disease (AD) makes it possible for patients to gain access to appropriate health care services and would facilitate the development of new therapies. AD starts many years before its clinical manifestations and a biomarker that provides a measure of changes in the brain in this period would be useful for early diagnosis of AD. Given the rapid increase in the number of older people suffering from AD, there is a need for an accurate, low-cost and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, the electroencephalogram (EEG) can play a vital role in this but at present, no reliable EEG biomarker exists for early diagnosis of AD. The gradual s
... Show MoreThe leaves of globe artichoke, Cynara scolymus Family Asteraceae/ compositea have long – used in traditional medicine and now included in British and European Pharmacopeia, the British Harbal Pharmacopeia and complete German Commission E monographs.The plant originally comes from Mediterranean region and North Africa and cultivated around the world. The flowers are used worldwide for nutrition purposes and the leaves for medical purposes including hepatic affections. The plant wildly distributed in Iraq in the watery lines and boundary of the field.The plant contains many phytochemicals such as the bitter phenolic acids whose choleretic and hypocholestremic as these compounds are antioxidant. Other materials to h
... Show More