Background: Pregnancy is considered a major risk factor for development and progression of periodontal disease. There are hormonal changes in both estrogen and progesterone hormones in addition to bacterial effect and poor oral hygiene that will enhance development of periodontal disease in pregnant women. Materials and methods: Seventy subjects were enrolled in the study, the subjects with an age range (20-35) years old without any history of systemic disease. The subjects were divided into 20 non-pregnant women they represent the control group (G I), 30 pregnant women with gingivitis (GII) and 20 pregnant women with periodontitis (GIII).All periodontal parameters (plaque index, gingival index, bleeding on probing, probing pocket depth and clinical attachment level) were recorded and 5ml of unstimulated saliva was collected for each subject. The collected saliva was centrifuged and clear supernatant was collected and kept frozen until biochemical analysis of salivary enzymes which included ALP, LDH and salivary Calcium. Results: No significant difference in the mean value of salivary ALP between GI and G II, while there is high significant difference between GI and GIII. There was significant difference in the salivary LDH and Ca levels between control group and group II, while there is highly significant difference of salivary LDH and Ca between group I and group III.There was significant difference in the number of bleeding sites, and probing pocket depth (PPD) among all groups. There was increase in the total number of all scores of PPD (score 1,2 and 3) GII and GIII compared to GI. Conclusions: Thepregnant women revealed more periodontal disease conditions (gingivitis and periodontitis) due to hormonal changes superimposed with microbial infection. Salivary enzymes (ALP, LDH) and salivary calcium are considered as good biochemical markers of periodontal tissue destruction and can be used to evaluate the effect of pregnancy on periodontal health status.
The aim of this study was to investigate the effect of operating variables on, the percentage of removed sludge (PSR) obtained during re-refining of 15W-40 Al-Durra spent lubricant by solvent extraction-flocculation treatment method. Binary solvents were used such as, Heavy Naphtha (H.N.): MEK (N:MEK), H.N. : n-Butanol (N:n-But), and H.N. : Iso-Butanol (N:Iso:But). The studied variables were mixing speed (300-900, rpm), mixing time (15-60, min), and operating temperature (2540, oC). This study showed that the studied operating variables have effects where, increasing the mixing time up to 45 min for H.N.: MEK, H.N.: n-Butanol and 30 min for H.N.: Iso-Butanol increased the PSR, after that percentage was decreased; increasing t
... Show MoreGe-Au infrared photoconductive detection was prepared from germanium single crystal which were doped with different gold concentration using thermal evaporation. The spectral resonsivity (Rλ), spectral detectivity (D*) were determined as function of wavelength, also the resistance, conductivity in dark and with illumination to infrared radiation, the gain and relative photo response have been measured with different gold concentration. Remarkable improvements in the photoresponse gain were observed for the highest resistance specimen at the expense of spectral detectivity values.
This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreIn this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Samples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructural
characterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal struct
In the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T
... Show MoreThis work studies with produce of light fuel fractions of gasoline, kerosene and gas oil from treatment of residual matter that will be obtained from the solvent extraction process as by product from refined lubricate to improve oil viscosity index in any petroleum refinery. The percentage of this byproduct is approximately 10% according to all feed (crude oil) in the petroleum refinery process. The objective of this research is to study the effect of the residence time parameter on the thermal cracking process of the byproduct feed at a constant temperature, (400 °C). The first step of this treatment is the thermal cracking of this byproduct material by a constructed batch reactor occupied with control device at a selective range of re
... Show More