Background: White spot lesion is the first visible sign of dental caries that is characterized by demineralized lesion underneath an intact surface. Several studies demonstrated that they could be treated using noninvasive techniques like the use of fluoride or casein phospho-peptide and amorphous calcium phosphate. Improvement in aesthetic outcomes by covering the demineralized enamel is one of the advantages of the use of resin infiltration and opal-ustre microabrasion, which are two new techniques that had been used for treatment of white spot lesion. The purpose of this study was to evaluate the impact of resin infiltration and microabrasion in the microhardness of the artificial white spot lesions at various depths. Material and method: Forty-eight artificially white spot lesions were divided into three groups (n=16) according to the depth of the lesion (shallow enamel, deep enamel, shallow dentine). Then, each of the main groups was divided into two subgroups (n = 8), the first group was treated with resin infiltration, while the second one was treated with Opalustre microabrasion. Assessment of the microhardness was done using Vickers hardness at the baseline, after demineralization (formation of the white spot lesion) and after the treatment with the resin infiltration and the microabrasion. Results: There was a significant difference in the microhardness of all the layers after demineralization. Although the hardness values that found among the icon group in the inner enamel and the outer dentine were higher than that of the opalustre, statistically there was no significant difference between the two mate-rials in all the layers of the white spot lesion. Conclusion: Microhardness values decrease as the depth of the white spot lesion increase. There was an increase in the microhardness values after the treatment with the resin infiltration and the microabrasion.
This study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-tem
... Show MoreAbstract:
Borago officinalis is highly interesting amongst nutritional and medical source relate to its high composition of some useful phytochemical compound. It is great plants with bright blue star-shaped flowers present in most world regions and usually known as borage. The Borago phytochemical analysis showed the presence of alkaloids, tannins, flavonoids, phenolic acids, essential oil, vitamins and others. Borage is cultivated all over the world and used in traditional medicine as a demulcent, diuretic, emollient, tonic, expectorant, for the treatment of coughs, inflammation and swelling, and other diseases. In herbal medicine, Borage seed oil (BSO) has been utilized for many progressive illnesse
... Show MoreThe aim of this research is to study the surface alteration characteristics and surface morphology of the superhydrophobic/hydrophobic nanocomposite coatings prepared by an electrospinning method to coat various materials such as glass and metal. This is considered as a low cost method of fabrication for polymer solutions of Polystyrene (PS), Polymethylmethacrylate (PMMA) and Silicone Rubber (RTV). Si were prepared in various wt% of composition for each solutions. Contact angle measurement, surface tension, viscosity, roughness tests were calculated for all specimens. SEM showed the morphology of the surfaces after coated. PS and PMMA showed superhydrophobic properties for metal substrate, while Si showed hydroph
... Show MorePetroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates
... Show MoreObjectives: To determine the contributing risk factors to adult nephrolithiasis patients.
Methodology: A descriptive study was conducted to determine the contributing risk factors to
Adults nephrolithiasis starting from December 2007 to September 2008. A purposive "nonprobability"
sample of (100) patients with nephrolithiasis was selected of those who were
admitted to the hospitals, attending the Urology Consultation Clinic and Extracorporeal Shock
Wave Lithotripsy Department. The study instrument consists of two parts. The first part is
related to the patients' demographic variables and the second part is constructed to serve the
purpose of the study. The total number of items in the questionnaire was (85) ones.
The continuous increase in population has led to the development of underground structures like tunnels to be of great importance due to several reasons. One of these reasons is that tunnels do not affect the living activities on the surface, nor they interfere with the existing traffic network. More importantly, they have a less environmental impact than conventional highways and railways. This paper focuses on using numerical analysis of circular tunnels in terms of their behavior during construction and the deformations that may occur due to overburden and seismic loads imposed on them. In this study, the input data are taken from an existing Cairo metro case study; results were found for the lateral and vertical displacements, the Peak
... Show MoreThe present study was conducted to evaluate the effect of variation of influent raw water turbidity, bed composition, and filtration rate on the performance of mono (sand) and dual media (sand and anthracite) rapid gravity filters in response to the effluent filtered water turbidity and headloss development. In order to evaluate each filter pe1formance, sieve analysis was made to characterize both media and to determine the effective size and uniformity coefficient. Effluent filtered water turbidity and the headloss development was recorded with time during each experiment.
In this work 5-methylene-yl - (2-methy –oxazole-4-one) (1H) imidazole (1) were synthesized from the reaction of L-Histidine with acetic anhydride and which converted to the of 5-methylene-yl-(2-methyl 3-amino imidazole-4-one)-1H-imidazole (2) by reaction with hydrazine hydrate. Schiff bases (3-6) were synthesized from the reaction of compound (2) with different aromatic aldehyde. Reaction of compounds (3-6) with chloroacetyl chloride gives azetidinone one derivatives (7-10). These compounds were characterized by FT-IR and some of them with 1H-NMR and 13C-NMR spectroscopy.