Background: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized via Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and particle size analyzer. The bioactive composite was deposited through radiofre-quency (Rf) reactive magnetron sputtering overlying disc-shaped samples with a dimension of 10 mm diameter were prepared from partially sintered Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Results: The particle size of the rice husk-derived ranged between (480.4 – 606.1) nm with a mean particle diameter of 541 nm. The eggshell derived calcium carbonate powder presented a particle size between (266.4-336) nm and a mean particle diameter of 299.9 nm. The XRD data revealed the crystalline nature and phase composition of the natural prepared calcium carbonate powder and demonstrate the monocrystalline nature of natural SiO2. FTIR spectrometer showed the emergence of novel spectra separated from the two innovative components. XRF analysis revealed that 99.4% of the rice husk is SiO2 while eggshell-derived powder is mainly composed of calcium oxide. Fe-SEM images of the coated zirconia exhibited average thickness of the natural CaCO3/SiO2 coat layer may reach to12.84 µ. Conclusion: The prepared composite derived from natural resource waste is suitable to be utilized as a coating material for ceramic dental implants with promising biological and mechanical properties.
Background: The healing period for bone–implant contact takes 3–6 months or even longer. Application of Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) to implant surfaces has been of great interest on osseointegration due to its osteoinductive potential. The objective of this study was to evaluate the effect of ErhBMP-2 on implant stability. Materials and methods: A total of 48 dental implants were inserted in 15 patients. Twenty four implants coated with 0.5 mg/ml ErhBMP-2 (study group). The other 24 implants were uncoated (control group). Each patient was received at least two dental implants at the same session. Both groups were followed with repeated implant stability measurements by me
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreThis study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive
... Show MoreThis work include synthesized and characterization the compound [I] by reaction 1,4-phenylenediamine with chloro acetic acid then this compound reaction with methanol in present sulfuric acid to synthesized ester compound [II] after that reaction with hydrazine hydrate to synthesized acide hydrazide [III] and the later compound reaction with substituted acetophenone[IV]n to synthesized substituted acetophenone hydrazones[V-XI]. In addition synthesized4-formylpyrazole derivatives [XIIXVIII] via cyclisation substituted acetophenone hydrazones [V-XI] with Vilsmeier-Haack reagent DMF/POCl3. The compounds characterized by melting points, FTIR, 1HNMR and mass spectroscopy. The mesomorphic behavior studied by using polarized optical microscopy and
... Show MoreNew compounds of amids [IV]a-e and Schiff bases [V]f-h derived from 2-amino-1,3,4-oxadiazoles [III] were synthesized and characterized by physical and spectraldata.2-Aamino-1,3,4-oxadiazoles was prepared by the action of bromine on acorresponding semicarbazide [II]( which was prepared by reaction of dialdehyde [I]with semicarbazide hydrochloride ) in the presence of sodium acetate , followed byan intramolecular cyclization . (PDF) Synthesis of New Amides and Schiff Bases derived From 2-Amino -1,3,4- Oxadiazole. Available from: https://www.researchgate.net/publication/326679206_Synthesis_of_New_Amides_and_Schiff_Bases_derived_From_2-Amino_-134-_Oxadiazole [accessed Nov 15 2023].
This search include the synthesis of some new 1,3-oxazepine derivatives have been prepared, starting from reaction of L-ascorbic acid with dry acetone in presence of dry hydrogen chloride afforded the acetal (I). Treatment of the latter with p-nitrobenzoyl chloride in pyridine yielded the ester (II) which was dissolved in (65%) acetic acid in absolute ethanol yielded the glycol (III). The reaction of the glycol (III) with sodium periodate in distilled water at room temperature produced the aldehyde (IV). The compound (V) [4-(1,3-dioxoisoindolin-2-yl)benzoic acid] was synthesized by reaction p-aminobenzoic acid and phthalic anhydride in presence of (gla. CH3COOH). Reaction of compound (V) with thionyl chloride produced [4-(1,3-dioxoisoindoli
... Show MoreIn the present study, mixed ligand compounds of Mn(II), Ni(II), Co(II), Cu(II), Cd(II) and Hg(II) were synthesized using new Ligand N1,N4-bis (pyrimidin-2-ylcarbamothioyl) succinimide (NPS) derived from [Butanedioyl diisothiocyanate with 2- aminipyridine] as first ligand, proline (pro) as second ligand and evaluation of their antioxidant activities for ligand, nickel and cobalt complex towards 1.1-Di-phenyl-2picrylhydrazyl (DPPH) will be compared to the standard anti-oxidants (i.e. the ascorbic acid). Those materials that have been prepared provided results are a result of exhibiting different activities of the radical scavenging for all of the compounds. Compounds were observed then confirmed through the Fourier-tra
... Show MoreIn this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability. The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) image
... Show More