Background: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized via Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and particle size analyzer. The bioactive composite was deposited through radiofre-quency (Rf) reactive magnetron sputtering overlying disc-shaped samples with a dimension of 10 mm diameter were prepared from partially sintered Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Results: The particle size of the rice husk-derived ranged between (480.4 – 606.1) nm with a mean particle diameter of 541 nm. The eggshell derived calcium carbonate powder presented a particle size between (266.4-336) nm and a mean particle diameter of 299.9 nm. The XRD data revealed the crystalline nature and phase composition of the natural prepared calcium carbonate powder and demonstrate the monocrystalline nature of natural SiO2. FTIR spectrometer showed the emergence of novel spectra separated from the two innovative components. XRF analysis revealed that 99.4% of the rice husk is SiO2 while eggshell-derived powder is mainly composed of calcium oxide. Fe-SEM images of the coated zirconia exhibited average thickness of the natural CaCO3/SiO2 coat layer may reach to12.84 µ. Conclusion: The prepared composite derived from natural resource waste is suitable to be utilized as a coating material for ceramic dental implants with promising biological and mechanical properties.
The study discussed here deals with the isolation of Aspergillus niger from palm dates, the formal and the most famous fruit in Iraq, to test and qualify this fungus isolate for its ability to produce citric acid. Submerged fermentation technique was used in the fermentation process. A.niger isolated from “Zahdi” Palme dates was used in the study of the fermentation kinetics to get the production efficiency of citric acid. Kinetics of CA production via fermentation by A. niger S11 was evaluated within 432 h fermentation time and under submerged conditions of 11% (w/v) sucrose, 5% (v/v) inoculum size, pH 4, 30 °C and 150 rpm. The maximum citric acid produced was (37.116 g/l). Kine
The bile salt hydrolase gene (bshA), encoding bile salt hydrolase enzyme (EC 3.5.1.24) from probiotic isolate Lactobacillus acidophilus Ar strain which is responsible for assimilation cholesterol were studied in the present work. About 801 bp in length DNA fragment of Lb. acidophilus Ar strain was amplified by PCR techniques. Two restriction sites (PstI/SacI) were added to each end of that fragment for manipulation of DNA during cloning. Amplified fragment inserted into pJET1.2\blunt end vector and pMG36e vector respectively. pJET1.2\blunt end vector is overexpression plasmid for E. coli MC1022, and pMG36e vector is a shuttle vector which is able to replicate in both E. coli and lactic acid bacteria. The resulted constructs were named as pJ
... Show More
After the defeat of the military terrorist organization "ISIS" and the fall of the throne of its alleged state in the Iraqi city of Nineveh, in Syrian Baghouz, and the end of its control over the land, the Syrian camps, especially "Al-Hol" camp, emerge as an incubator for the ideology of the terrorist organization "ISIS" and a vital base for its consolidation and dissemination, which includes (68,000- 73,000) people. During the years following the military defeat of (ISIS), the camp witnesses the spread of extremist ideas widely at the hands of its residents, including the families of the organizations dead's, extremist detainees, and those who deal with it, taking advantage of the deterioration of the environmental, se
... Show MoreThe research aims to identify the psychological and health risks that a child might be exposed to by playing with hazardous toys such as pellet guns. To this end, the researcher has visited Ibn Al-Haytham Eye Hospital in Baghdad, the emergency department to figure out the rate of injuries in Children for the consecutive years (2017-2018) and the first Month of (2019). The psychological risks as a result of disability are represented by the inability to accommodate the surrounding environment well. Additionally, the child experiences a kind of tension, conflict, and going in psychological crises through introversion, isolation, withdrawal tendencies, and poor conformity with himself and the Society.
Abstract The study aimed at demonstrating the reality of sectarian coexistence in Iraq, which was characterized by the tolerance and coercion caused by the successive government policies to govern Iraq and to this day. The study was based on the hypothesis that coexistence between Islamic sects in Iraq can be achieved as long as there are strong bonds linking its components, and these bonds can produce coexistence between the sects based on peace. The study concluded that the hypothesis is correct, in addition to drawing a set of observations aimed at identifying weaknesses for advancing them through the adoption of mechanisms that address these weaknesses to yield towards a genuine peaceful coexistence among Islamic sects in Iraq.
Production of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.
The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MoreElectrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel. Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig
... Show MoreA simple low-cost approach at various exposure times was utilized to generate cold plasma in the aim to fabricate AuNPs. UV-Visible spectra and X-ray diffraction were used to characterize the nanoparticles (XRD). Surface Plasmon resonance was observed in the synthesized AuNPs at 530, 540, and 533 nm. For all samples, the patterns of XRD show very intensive peaks implying the fcc crystalline structure of AuNPs. The average crystallite size of AuNPs is ranging between 20-30 nm. The observation of morphology by FESEM revealed the spherical formation of AuNPs. Doses of 100 and 200 ppm of AuNPs were adapted to investigate their effect on the blood-mixture with and without a 20-second of cold plasma exposure. The WBC components in the blood
... Show More