Background: The purpose of this study was to evaluate the effect of addition of surface treated silicon dioxide Nano filler (SiO2) on some properties of heat cured acrylic resin denture base material (PMMA). The properties were impact strength, transvers strength, and surface hardness. Materials and methods: In addition to controlled group SiO2 powder was added to PMMA powder by weight in three different percentages 3%, 5% and 7%, mixed by probe ultra-sonication machine.120 specimens were constructed and divided into 3 groups according to the test (each group consist of 40 specimens) and each group was subdivided into 4 sub-groups according to the percentage of added SiO2 (finally each subgroup consist of 10 specimens). The tests conducted were impact strength (charpy test), transverse strength and indentation hardness (shore D). Results: A highly significant increase in impact strength and transverse strength was observed with the addition of SiO2 powder to (PMMA) at the percentage of 3% and 5%; while a significant reduction occurred in both impact and transverse strength specimen’s tests at the percentage of 7% A Highly significant increase in surface hardness was observed at the percentage of 3%, 5%and7. Conclusion: The addition of Nano SiO2 powder to acrylic resin improves the impact strength and transverse strength of acrylic resin at the same time this addition increase surface hardness with the increase in the concentration of Nano SiO2 particles.
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreBackground: Nanotechnology represents a new science that promises to provide a broad range of uses and improved technologies for biological and biomedical applications. One of the reasons behind the intense interest is that nanotechnology permits synthesis of materials that have structure is less than 100 nanometers. The present work revealed the effect of zinc oxide nanoparticles (ZnO NPs) on Streptococcus mutans of Human Saliva in comparison to de-ionized water. Materials and methods: Streptococcus mutans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs w
... Show MoreTo achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreGreen synthesis is depending on preparation of nano composited SiO2/V2O5 by using the modified sol-gel method depending on rice husk ash as a source for the extraction of silica gel and the product powder of nano composited SiO2/V2O5 characterization by many techniques such as X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and N2 adsorptions/desorption isotherms (BET). This study also includs the biological effectiveness of SiO2/V2O5 and its effect on inhibiting bacterial growth after the prepared nanomaterial was applied to wound dressings, which gave a promising result for its use as
... Show MoreMortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.
The Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show MoreThe importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation li
... Show More