Background: The bond strength of endodontic sealers with dentin is a very important property for maintaining the integrity and seal of the root canal filling. The aim of this study was to evaluate and compare the effect of various irrigants (QMix, 17% EDTA and 2.5% NaOCl) on the push-out bond strength of AH plus and Bioceramic sealers. Materials and methods: Forty eight freshly extracted maxillary first molars human teeth with striaght palatal root were used in the study. The collected samples were randomly divided into three groups of equal sample size (n=16), according to the final irrigation regimen as follows: Group (1): QMix 2 in 1, Group (2): 17% ethylenediaminetetraacetic acid, Group (3): 2.5% sodium hypochloride. All samples were instrumented using Edge file X7 rotary instrument reaching file size 40/.04 as the final master apical file. After that each group was randomly divided into two subgroups (n=8) according to the type of sealer used: AH Plus and Total Fill BC Sealer. Obturation was conducted using single cone technique with gutta percha (GP) to all experimental roots. Two-millimeter thick slices were obtained from the middle section of the root. Bond strength of sealers was measured via a universal testing machine by using stainless steel plunger. Then, the data were statistically evaluated using two-way analysis of variance (ANOVA) and post hoc test (Bonferroni’s test). Results: The push-out bond strength was significantly increased by the “irrigant†factor (P≤0.05) and by “sealer/irrigation solution†interaction (P≤0.05). Final rinse with QMix solution with BC sealer showed the highest mean value of bond strength (5.976 MPa), with a significant difference with other groups (P≤0.05), while NaOCl with AH Plus sealer showed the lowest mean value of bond strength (3.811 MPa). Conclusion: Final irrigation of the root canals with different irrigants improved the endodontic sealer's bond strength, and QMix had a positive influence on the adhesion of BC sealer.
Soil stabilization with liquid asphalt is considered as a sustainable step towards roadway construction on problematic subgrade soil, there are no requirements to import good quality materials or to implement energy consumption, but to mix the readily available soil with liquid asphalt through the cold mix technique. In this work, collapsible soil obtained from Nasiriya was mixed with asphalt emulsion, lime, and combinations of lime and asphalt emulsion (combined stabilization) and tested in the laboratory for California bearing ratio in dry and soaked conditions. Field trial sections have been prepared with the same combinations and subjected to plate bearing test. The influence of combined stabilization on the structural properties in ter
... Show MoreIn this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.
The m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.