Background: Polymer surfaces usually present problems in bonding and finishing due to their low hydrophilicity. The aim of this study is to investigate the effect of plasma treatment with the use of two types of gases (oxygen and argon) on surface roughness, and chemical surface properties of acrylic resin denture base polymer material. Materials and Methods: Three heat cured acrylic resin specimens of (2*8*30 mm) dimensions were prepared for each test carried out in this study. Two tests were conducted, surface roughness test and chemical surface analysis test. Results: Application of plasma treatment increased surface roughness for both oxygen and argon plasma treated acrylic resin specimen groups compared with control untreated group, with a highly significant difference (P <0.01) among groups. FTIR chemical analysis for oxygen plasma treated acrylic resin specimen group showed a spectrum with a broad peak, which represents the hydroxyl group (-OH). This was an important chemical change that increased the hydrophilicity as compared with FTIR spectrums of control and argon plasma treated acrylic resin groups which exhibited relatively the same peaks with mild chemical changes. Conclusion: Application of oxygen and argon plasma treatment represents an effective surface treatment method for increasing the surface roughness of acrylic resin denture base polymer material. Oxygen plasma treatment can activate the treated surface towards further chemical reactions, and increase the hydrophilicity of the acrylic resin denture base polymer material. Key words: Acrylic resin polymer, plasma treatment, surface roughness, FTIR analysis.
The study aims at showing the effect of basil oil on the sensory properties of the laboratory biscuits. the results show the sensory valuation before and after the storage. the (A4) equation exceeds 15% of T exchange (3 , 4 , 5 g. basil 19 , 55 g . fats )in most of the studied sensuous qualities. Then, the (A5) equation of 20% exchange percentage (4.60g. basil oil + 18.40g. fats). Then, the (A3) equation of 10% exchange percentage (2.30g. basil oil + 20.70g. fats). Then the (A2) equation of 5% exchange percentage (1.5g. basil oil + 21.85g. fats). Finally, the control equation (A1) received the lower value of sensuous evaluation and general acceptance. Abstract differences also appeared at denotation level 0.05 between the (A2)
... Show MoreThe electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
Background: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MoreThis present study is aimed at deciding the impact of exercises adapted to the ranges of movements of the arm on the performance of javelin throwing. As long as javelin throwing is quite a complex athletic event that presupposes a considerable amount of strength, speed, and biomechanical accuracy, it is crucial to learn whether the exercises designed to target the peculiarities of arm movements can have a positive effect on the performance of javelin throwers. To the study, experimental research with a single group of six youth javelin throwers was carried out. Before and after the eight-week training program, the pre-tests and post-tests were conducted to find the results of training with a specific focus on resistance exercises. Significa
... Show MoreIn the present work, the effect of size of zinc dust particles on
AC argon discharge characteristics are investigated
experimentally. The plasma characteristics are determined by
using optical emission spectroscopy (OES) techniques. The
results illustrated that the electron temperature (Te) in the present
and absent of Zinc dust particle is reduced with increasing of
pressure. The electron temperature decreases with increasing of
Zinc dust size. Excitation temperature Tex is reduces with
increasing of Ar pressure in present and absent of zinc dust
particles. The present of Zinc dust reduce the Tex of Ar in both
Zinc dust size. The electron density increasing in the present and
absent of both zinc dust siz
In this work; Silicon dioxide (SiO2) were fabricated by pulsed
laser ablation (PLA). The electron temperature was calculated by
reading the data of I-V curve of Langmuir probe which was
employed as a diagnostic technique for measuring plasma properties.
Pulsed Nd:YA Glaser was used for measuring the electron
temperature of SiO2 plasma plume under vacuum environment with
varying both pressure and axial distance from the target surface. The
electron temperature has been measured experimentally and the
effects of each of pressure and Langmuir probe distance from the
target were studied. An inverse relationship between electron
temperature and both pressure and axial distance was observed.
Low-pressure capacitively coupled RF discharge Ar plasma has been studied using Langmuir probe. The electron temperature, electron density and Debay length were calculated under different pressures and electrode gap. In this work the RF Langmuir probe is designed using 4MHz filter as compensation circuit and I-V probe characteristic have been investigated. The pressure varied from 0.07 mbar to 0.1 mbar while electrode gap varied from 2-5 cm. The plasma was generated using power supply at 4MHz frequency with power 300 W. The flowmeter is used to control Argon gas flow in the range of 600 standard cubic centimeters per minute (sccm). The electron temperature drops slowly with pressure and it's gradually decreased when expanding the electro
... Show More