Background: Blood group system and the ability to taste phenylthiocarbamide (PTC) are the most studied traits in human genetics which have been extensively used in describing genetic variations among human populations around the world that may had an effect on dental caries. The aims of present study were to investigate the caries experience among students with different bitter taste threshold in relation to blood type. Materials and Methods: The sample of present study includes dental students female aged19-21 years. The diagnosis of dental caries was done according to the criteria of Manjia et al, 1989 recording decayed lesion by severity (D1-4) MFS. Furthermore, bitter taste sensitivity was measured according to PTC (phenylthiocarbamide) test while concerning blood types, depending on the identity student’s. Statistical analysis that used in this study can be classified into two categories: Descriptive Analysis and second Inferential analysis (Levene test, One-way Analysis of Variance). Results: The data of present study demonstrated that the differences in caries experience among different bitter taste threshold were found statistically not significant although the higher mean value for the higher grades of caries severity (D2-3) were among medium taster students while the non-taster group had the higher mean value of D1. Concerning difference in caries experiences among students with different bitter taste threshold for blood types were not significant in spite of grade D1 was found higher among non –taster A, AB blood type students while for O blood type students were found within super taster. While grade D4 severity was found higher with medium taster among students with A, AB blood types while found higher with super taster among students with O type as grades D4 were absent among students with B blood type. Conclusion: Bitter taste perception which identified according to ptc test has some effect on dental caries experience and were found different for different blood type
Mixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding
This research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis
... Show MoreIn this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA th
... Show MoreThis study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)
... Show MoreIn this research a new compounds were synthesized started from compound 1 which was synthesized from two moll of piperidine (secondary cyclic amine) with dichloro acetic acid, compound 1 reacted by condensation reaction with methanol and H 2 SO 4 as a catalyst to give the ester compound 2. Compound 2 was reacted with hydrazine hydrate 80 % to give compound 3 , then the compounds 4-13 were synthesized from refluxing of compound 3 with the selected aldehydes and ketones via using few drops of glacial acetic acid, finely step the compounds 4-13 were reacted with phtalic anhydride to give compounds 14-23.. All these compounds were characterized by using of melting point, FTIR, 1 HNMR and mass spectroscopy. Scheme 1 and Scheme 2 shown the all re
... Show MoreAbstract
The purpose of our study was to develop Dabigatran Etexilate loaded nanostructured lipid carriers (DE-NLCs) using Glyceryl monostearate and Oleic acid as lipid matrix, and to estimate the potential of the developed delivery system to improve oral absorption of low bioavailability drug, different Oleic acid ratios effect on particle size, zeta potential, entrapment efficiency and loading capacity were studied, the optimized DE-NLCs shows a particle size within the nanorange, the zeta potential (ZP) was 33.81±0.73mV with drug entrapment efficiency (EE%) of 92.42±2.31% and a loading capacity (DL%) of 7.69±0.17%. about 92% of drug was released in 24hr in a controlled manner, the ex-vivo intestinal p
... Show More