Background: One of the unique prosthesis for tooth or teeth replacement is the dental implant. Our attempt is using a biomaterial system that is easily obtained and applicable and has the ability to provoke osteoinductive growth factor to enhance bone formation at the site of application. One of these natural polymers is hyaluronic acid. Material and methods: Sixty machined surface implants from commercially pure titanium rod inserted in thirty NewZealand rabbits. Two implants placed in both tibia of each rabbit. The animals scarified at 1, 2 and 4 weeks after implantation (10 rabbits for each interval). For all of animals the right tibia’s implant was control (uncoated) and the left one was experimental (coated with 0.1ml Hyaluronic acid gel). All sections have been stained with Haematoxylin and Eosin then they were histologically examined and assessed for histomorphometric analysis for counting of bone cells (osteoblast, osteocyte and osteoclast), cortical bone thickness, trabecular width, thread width and marrow space star volume (V*). Results: Histological findings for hyaluronic acid- coated titanium implant revealed an earlier bone formation, mineralization and maturation than that in control groups. Histomorphometric analysis for all bone parameters that examined in this study, showed highly significant difference between control and experimental groups in all healing intervals. Conclusion: Commercially pure titanium endosseous implants coated with hyaluronic acid may be osteocoductive thus accelerating healing process and enhancing osseointegration.
Abstract: This study aims to investigate the effects of solvents of various polarities on the electronic absorption and fluorescence spectra of RhB and Rh6G. The singlet‐state excited dipole moments (me) and ground state dipole moments (mg) were estimated from the equations of Bakshiev -Kawski and Chamma‐ Viallet using the variation of Stokes shift along with the solvent’s dielectric constant (e) and refractive indexes (n). The observed singlet‐state excited dipole moments were found to be larger than the ground‐state ones. Moreover, the obtained fluorescence quantum yield values were influenced by the environment of the fluorescing molecule. Consequently, the concentration of the dye solution, excited singlet state absorption and
... Show MoreLow- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreThis study aimed to investigate the effect of water treated with a magnetic field with different induction on the histological structure of the kidney and testicular tissue of albino rats. For this purpose, fifty albino rats were divided into five equal groups, the first of which was used as a control group, drank clean tap water for four weeks, the other groups were given daily water treated with a magnetic field with an induction of 500, 1000, 1500 and 2000 gauss. Then the animals were sacrificed and histological changes in the kidneys and testicles were examined. Histopathological examination of the kidneys of animals that were given water treated with a magnetic field with an induction of 500, 1000 and 1500 gauss revealed n
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreThe durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and elongated particle ratios and angularity, as well as mineral composition (quartz versus calcite), on asphalt mixture durability. The durability of mixtures was evaluated through Marshall properties as well as moisture susceptibility indicators, including the tensile strength ratio (TSR) and index of retained strength (IRS). Statistical analyses (ANOVA and t-tests) were also conducted to confirm the significance of the observed effects.
... Show MoreThe food web is a crucial conceptual tool for understanding the dynamics of energy transfer in an ecosystem, as well as the feeding relationships among species within a community. It also reveals species interactions and community structure. As a result, an ecological food web system with two predators competing for prey while experiencing fear was developed and studied. The properties of the solution of the system were determined, and all potential equilibrium points were identified. The dynamic behavior in their immediate surroundings was examined both locally and globally. The system’s persistence demands were calculated, and all conceivable forms of local bifurcations were investigated. With the aid of MATLAB, a numerical simu
... Show MoreThis work consists of a numerical simulation to predict the velocity and temperature distributions, and an experimental work to visualize the air flow in a room model. The numerical work is based on non-isothermal, incompressible, three dimensional, k turbulence model, and solved using a computational fluid dynamic (CFD) approach, involving finite volume technique to solve continuity, momentum and energy equations, that governs the room’s turbulent flow domain. The experimental study was performed using (1/5) scaled room model of the actual dimensions of the room to simulate room air flow and visualize the flow pattern using smoke generated from burnt herbs and collected in a smoke generator to delivered through
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show More