Background: Facial disfigurement can be the result of a congenital anomaly, trauma or tumor surgery, in many cases the prosthetic rehabilitation is indicated. Maxillofacial prosthetic materials should have desirable and ideal physical, aesthetic, and biological properties and those properties should be kept for long period of time in order to reach patient acceptance. Silicone elastomer are the most commonly used material for facial restoration because of its favorable properties mechanically and physically as the biocompatibility and good elasticity. Aim of this study: This study aimed to evaluate the effect of addition of Aluminum oxide (Al2O3) Nano fillers in different concentrations on tear strength and hardness of VST 50F room temperature vulcanized maxillofacial silicone. Methods: The Nano Al2O3 was added in a concentrations of 0.5, 1, 1.5 and 2 by weight to the VST 50F RTV maxillofacial silicone, the samples were tested for tear strength (ISO 34 -1) and shore A hardness (ISO 7619), the FTIR was used to analyze the interaction of the Nano Al2O3 with the silicone. The data were analyzed using descriptive and inferential statistics. One-way ANOVA test was used to test the changing significance. Results: There was no interaction between the Nano-Al2O3 and the silicone in the FTIR. The results showed highly significant increase in tear strength and shore A hardness for the 1 and 1.5 concentration groups when Compared to control group. Conclusion: The reinforcement of VST 50F maxillofacial silicone with 1 and 1.5 concentrations of Nano Al2O3 improved some of the mechanical properties of the room temperature vulcanized silicone.
In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreFacial trauma in children and adolescents is reported to range from 1% to 30%. Because of many anatomical, physiological, and psychological characteristics of the pediatric population, maxillofacial injuries in children should be treated with special consideration that is attributable to certain features inherent in facial growth patterns of children. This study evaluated maxillofacial injuries in 726 children in terms of incidence, patterns of injury, causes, and treatment modalities and compared these parameters among 3 pediatric age groups. Intergroup differences were analyzed using Z test for 2 populations' proportion. The results showed that the incidence of pediatric maxillofacial injuries and fractures is higher than that reported el
... Show MoreIn this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The e
... Show MoreObjective: To conduct a standardized method for cavity preparation on the palatal surface of rat maxillary molars and to introduce a standardized method for tooth correct alignment within the specimen during the wax embedding procedure to better detect cavity position within the examined slides. Materials and methods: Six male Wistar rats, aged 4-6 weeks, were used. The maxillary molars of three animals were sectioned in the frontal plane to identify the thickness of hard tissue on the palatal surface of the first molar which was (250-300µm). The end-cutting bur (with a cutting head diameter of 0.2mm) was suitable for preparing a dentinal cavity (70-80µm) depth. Cavity preparation was then performed using the same bur on the tooth surf
... Show MoreObjective: To conduct a standardized method for cavity preparation on the palatal surface of rat maxillary molars and to introduce a standardized method for tooth correct alignment within the specimen during the wax embedding procedure to better detect cavity position within the examined slides. Materials and methods: Six male Wistar rats, aged 4-6 weeks, were used. The maxillary molars of three animals were sectioned in the frontal plane to identify the thickness of hard tissue on the palatal surface of the first molar which was (250-300µm). The end-cutting bur (with a cutting head diameter of 0.2mm) was suitable for preparing a dentinal cavity (70-80µm) depth. Cavity preparation was then performed using the same bur on the tooth
... Show MoreBackground: The PMMA polymer denture base materials are low in thermal and strength properties. The aim of the study was to investigate the change in glass transition temperature, E-Moudulus and coefficient of thermal expansion of acrylic denture base material by addition of Al2O3, TiO2 and SiO2nano-fillers in 5% by weight. Materials and methods: The type of polymerization is free radical bulk polymerization. one hundred twenty (120) specimens were prepared , the specimens were divided into four groups according to the material had been added (one control and three for Al2O3, TiO2 and SiO2nanocomposite) each group was subdivided in to three groups according to the test had been done on it, the degree of transition (Tg) was measured by The d
... Show MoreBackground: Poly propylene fibers with and without silane treatment have been used to reinforce heat cure denture base acrylic but, some mechanical properties like transverse strength, impact strength, tensile strength, hardness, wear resistance and wettability. Which are related to the clinical use of the prosthesis are not evaluated yet. The aim of the study is to identify the influence of incorporation of treated and untreated fibers on these properties Materials and methods: Eighty four heat cure acrylic specimens were constructed by conventional flasking technique. They were divided into six groups according to the tests and each group was subdivided into two subgroups control and experimental groups (seven samples for each subgroup
... Show MoreIn this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
The aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob