Background: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and methods: Thirty extracted primary molar teeth and thirty extracted permenant premolar teeth were used in this study 20 for each material, then standardized Class V cavities of teeth was prepared in the buccal and lingual surfaces. Using Polyacid-modified composite Resin (Compomer), flowable composite resin and Resin-modified glass Ionomer RMGI. The samples will be divided into three groups according to type of restorative material used and light cured with a light cure device (Ivoclar Vivadent Bluephace), after complete curing the sample will examined by Scanning electron microscope (SEM) and then measure the microleakage. Results: The RMGI shows the statistically significantly lowest mean value of microleakage, followed by Compomer shows statistically significantly lower mean value. Flowable Composite shows the statistically significantly highest mean microleakage. There is no statistically significant difference in microleakage values between the permanent and primary teeth. Conclusion: The Resin-modified glass Ionomer is better in term of microleakage than Polyacid-modified composite Resin and Flowable Composite.
Background: Restoration of the gingival margin of Class II cavities with composite resin continues to be problematic, especially where no enamel exists for bonding to the gingival margin. The aim of study is to evaluate the marginal leakage at enamel and cementum margin of class II MOD cavities using amalgam restoration and modern composite restorations Filtek™ P90, Filtek™ Z250 XT (Nano Hybrid Universal Restorative) and SDR bulk fill with different restoratives techniques. Materials and method: Eighty sound maxillary first premolar teeth were collected and divided into two main groups, enamel group and cementum group (40 teeth) for each group. The enamel group was prepared with standardized Class II MOD cavity with gingival margin (1 m
... Show MoreABSTRACT Background: Dental anomalies of teeth are major issue that contributes to dental problems encountered in general practice. The aim of this study is to measure the prevalence of dental anomalies and the associated etiological factors among 15 years old students in Basrah city –Iraq. Materials and methods: The total sample composed of 1000 students (435 males and 565 females) from urban area selected randomly from different high schools in the city. Diagnosis of dental anomalies were recorded by present or absent, diagnosis and recording of enamel defects were done according to the criteria of WHO (1997). Results: The prevalence of hypodontia was 4.6%, Females have higher prevalence than males (5.8% females and 3.0% males), ta
... Show MoreThis research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.
The increasing requirement and use of dental implant treatments has rendered dental implantology indispensable in dentistry. The aim of this study is to determine the optimum concentration of calcium silicate to be incorporated into a polyetherketoneketone (PEKK) matrix used as an implant material to enhance the bioactivity and mechanical properties of the composite compared with unmodified PEKK. In this study, different weight percentage (wt%) of micro-calcium silicate (m-CS) is incorporated into PEKK with ethanol as a binder. Subsequently, the mixture is dried in a forced convection oven at 120°C and poured into customized molds to fabricate a bioactive composite via compression molding (310°C, 15 MPa, and 20 min holding time
... Show MorePurpose:To evaluate knowledge, practice and attitude of community pharmacists in Basra regarding modified release dosage forms which are widely used for many therapeutic purposes in pharmacy practice.
Methods:The current study was conducted among certified pharmacists in Basra governorate- south of Iraq. Data collection was carried out by a questionnaire.
Results:A total number of 175 community pharmacists responded to the questionnaire. The majority worked in OTC based dispensing pharmacies located in the center of the city. Most respondents missed K1 and were unable to state the difference between different types of modified products. There was a major positive agreemen
... Show MoreThe aim of the present study is to formulate floating effervescent microsponge tablet of the narrow absorption window drug, Baclofen (BFN) for controlling drug release and thereby decrease the side effect of the drug. The microsponges of BFN were prepared by non-aqueous emulsion solvent diffusion method (oil in oil emulsion method). The effects of drug: polymer ratio, stirring time and type of Eudragit polymer on the physical characteristics of microsponges were investigated and characterized for production yield, loading efficiency, particle size, surface morphology, and in vitro drug release from microsponges. The selected microsponge formula was incorporated into the floating effervescent gastro-retentive tablet. The prepared fl
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreConventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show More