Background: Hyperlipidemia is an elevated fat (lipids), mostly cholesterol and triglycerides, in the blood. These lipids usually bind to proteins to remain circulated so-called lipoprotein. Aims of the study: To determine taste detection threshold and estimate the trace elements (zinc) in serum and saliva of those patients and compare all of these with healthy control subjects. Methods: Eighty subjects were incorporated in this study, thy were divided into two groups: forty patients on simvastatin treatment age between (35-60) years, and forty healthy control of age range between (35-60) years. Saliva was collected by non-stimulated technique within 10 minutes. Serum was obtained from each subject. Zinc was estimated in serum and saliva by flame atomic absorption assay. Taste detection threshold was estimated by using 15 different concentrations of the four basic tastes solutions, the test use sip and spit with deionized water as mouth wash interval. Diabetics, thyroid and parathyroid disease, autoimmune disease, chemotherapy, smoking, alcoholics, neoplastic diseases were excluded. Results: The study showed that the taste detection threshold of sour and bitter were highly significantly higher in those patients than that in control subjects, sweet detection threshold were significantly high in patient on simvastatin. The salt detection threshold showed no significant differences between study groups. Salivary flow rate was significantly decreased in patients on simvastatin treatment than that in control subjects. Salivary and serum zinc were highly significantly decreased in control subjects than those in patients. There was highly significantly positive linear correlation between salivary flow rate and the mean of detection threshold of sweetness and sourness of both study groups, and highly significantly negative linear correlation with the mean of detection threshold of saltiness and bitterness in both study groups.
The fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
Aim: The study aimed to investigate the presence of the specific B1 gene T gondii in blood and milk samples from natural infected cattle and pregnant women (16-30 weeks) whose examination performed by the officers at the women's and children's Educational hospital in Al-Diwaniyah, Iraq. Materials and methods: A total of 150 serum samplings were collected analysed and scanned for Anti-T gondi antibodies (75 naturally-infected goats and 75 pregnant women with Toxoplasma). Polymerase chain reaction (PCR) was used to detect of B1(399pb) gene in 26 goat's blood samples and 7 samples from pregnant women. Results: A quick-test anti-cassette gondii results showed 26 positive samples of goats in a percentage of 34,666 percent, while a higher percent
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the road in all the sections of the country. Vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the developing system is consist of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MoreIn this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the road in all the sections of the country. Vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the developing system is consist of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny Edge detection algo
... Show MoreIn this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.