Background: The surface properties of the titanium alloy plays a significant role in the bond of the dental implant with living bone and modification of the implant surface could enhance osseointegration. This study was aimed to investigate the effect of different durations of heat treatment on the surface properties of titanium alloy for dental implants. Materials and methods: Twenty disks of (Ti-6Al-4V) alloy were prepared. The sample was divided into four test groups to study the effect of different duration of heat treatment to the surface topography; surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples were investigated to evaluate the effect of different durations of heat treatment at a temperature of 750°C. Results: The surface topography, surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples improved highly significantly as the duration of heat treatment increased. Conclusions: The heat treatment of 750°C for 90 minutes showed the highest improvement in the surface properties which in turn will lead to enhancement in the osseointegration of the dental implant.
Semiconductor-based metal oxide gas detector of five mixed from zinc chloride Z and tin chloride S salts Z:S ratio 0, 25, 50, 75 and 100% were fabricated on glass substrate by a spray pyrolysis technique. With thickness were about 0.2 ±0.05 μm using water soluble as precursors at a glass substrate temperature 500 ºC±5, 0.05 M, and their gas sensing properties toward CH4, LPG and H2S gas at different concentration (10, 100, 1000 ppm) in air were investigated at room temperature which related with the petroleum refining industry.
Furthermore structural and morphology properties were scrutinize. Results shows that the mixing ratio affect the composition of formative oxides were (ZnO, Zn2SnO4, Zn2SnO4+ZnSnO3, ZnSnO3, SnO2) ratios ment
Increased diseases and obesity currently due to increased production and excessive consumption of foods manufactured from non-food sweeteners without attention to the risk of consuming those additional high calories due to consuming these refreshing products such as juices and other various drinks, especially in the summer season by most segments of Iraqi society, especially workers, children and school students the aim of this study. Therefore, the study designed to replace sucrose with 0.03, 0.04 and 0.05% of each of the white stevia crystals and milled dry stevia leaves in the laboratory manufacture of juices and its effect on the general and sensory characteristics and the extent of their acceptability among the specialized r
... Show MoreThis study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and
... Show MoreThe nuclear size radii, density distributions and elastic electron scattering charge form factors for Fluorine isotopes (17,19,20,24,26F) were studied using the radial wave functions (WF) of harmonic-oscillator (HO) potential and free mean field described by spherical Hankel functions (SHF) for the core and the valence parts, respectively for all aforementioned isotopes. The parameters for HO potential (size parameter ) and SHF were chosen to regenerate the available experimental size radii. It was found that using spherical Hankel functions in our work improved the calculated results quantities in comparison with empirical data.
Although renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o
... Show MoreA laboratory experiment has been carried out in the College of Science-University of Salahaddin to study the effect of different levels (0,5,10 and 15%) and sizes(250 and 1000µm) of walnut seeds residues and (160mg.kg-1) phosphorus fertilization on the concentration of phosphorus availability and alkaline phosphatase activity in calcareous soil during 15 and 30 days period of incubation, the experimental design in factorial complet randomize design (C.R.D) with three replications. The results indicated that the application of different levels of walnut seed residues decreases the concentration of phosphorus availability and alkaline phosphatase activity, however the results revealed that combination between levels and sizes o
... Show More