Background: Ideal root canal obturation depends on many factors; one of them is good sealing of root canal without pores. The aim of this study was to determine the radiographic density of GuttaFlow® 2 with different obturation techniques using spiral computed tomography. Materials and Methods: Forty palatal roots of permanent maxillary first molar were used in this study. Following working length determination, root canal was prepared using rotary PROTAPER universal system. They were randomly divided into four groups of 10 roots each, the groups are Conventional lateral condensation with Apexit Plus sealer, Conventional lateral condensation with GuttaFlow® 2 as a sealer, Soft Core Regular with GuttaFlow® 2 as a sealer and single cone with GuttaFlow® 2. The experimental roots were then analyzed in both horizontal and vertical sections from the apex to coronal using Spiral Computed Tomography. The obtained data were analyzed using one-way ANOVA and Tukey tests at a level of significance of 0.05. Results: Statistical analysis showed highly significant differences among the different areas (apical, middle and coronal) of each group. The density of obturation systems decreased in the following sequence: single cone with GuttaFlow® 2 (highest density), Soft Core Regular, Conventional lateral condensation with GuttaFlow® 2 as a sealer and finally Conventional lateral condensation with Apexit Plus sealer (lowest density) Conclusion: None of the tested obturation techniques can achieve ideal three-dimensional dense obturation. Single cone with GuttaFlow® 2 shows the best results.
Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres
... Show MoreAbstract Portable communication devices such as WLAN, WiMAX, LTE, ISM, and 5G utilize one or more of the triple bands at (2.32.7 GHz,3.4–3.6GHz,and5–6GHz)andsufferfromtheeffectofmultipathproblemsbecausetheyareusedinurbanregions.To date, no one has performed a review of the antennas used for these types of wireless communications. This study reviewed two types of microstrip antennas (slot and fractal) that have been reported by researchers (as a single element) using a survey that included the evaluation of several important specifications of the antennas in previous research, such as operating bandwidth, gain, efficiency, axial ratio bandwidth (ARBW), and size. The weaknesses in the design of all antennas were carefully identified to de
... Show More
ABSTRUCT
The main aim of this research has been associated with the study of relationship between competitive intelligence and strategic risk, and to deduct their specific trends, which are interpreted as predicted by research hypotheses according to a review of literature including prior studies. The basic theme of these hypotheses is related to the probability that declining levels of strategic risk and competitive positions of industrial companies is dependent upon the growing capacity to stay ahead of competitors in the market.
A purposive non-random
... Show MoreAzo dye ligand was produced by coupling the diazonium salt of 4aminoantipyrine with 2, 4-dimethylphenol. The structure of 1 azo compound was someone by elemental analyses, HNMR, FT-IR and UV-Vis spectroscopic mechanics. Metal complexes of nickel (II) and copper (II) have been performed and depicted. The formation of complexes has been identified by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectral process as well as, conductivity and magnetic properties quantifications. The nature of the complexes formed were studied succeed the mole ratio and continuous variation methods, Beer's law followed over a concentration 4 4 scope (1×10- - 3×10- M). High molar absorbtivity of the complex solutions were observed. Analytica
... Show MoreSynthesis of a new class of Schiff-base ligand with a tetrazole moiety to form polymeric metal complexes with CoII, NiII, ZnII, and CdII ions has been demonstrated. The ligand was synthesised by a multi-steps by treating 5-amino-2-chlorobenzonitrile and cyclohexane -1,3-dione, the 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) was obtained. The precursor (M) was prepared from the reaction 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) with NaN3 to obtained (1E,3E)-N1,N3-bis(4-chloro-3-(1H-tetrazol-5-yl)phenyl)cyclohexane-1,3-diimine (N). By reacting the precursor (M) with CS2
... Show MoreIn this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial co
... Show More