background: osteoporosis is a metabolic bone disease that affects women more than men, it is characterized by generalizes reduction of bone mineral density (BMD) leaving a fragile weak bone that is liable to fracture, gonial angle index (GAI) is one of the radio-morphometric indices, it has been controversial whether it is related to bone mineral density or ageing or none of them. The aim of study is to evaluate the role of cone beam computed tomography (CBCT) as a screening tool for diagnosis of osteoporosis and age effect in females using gonial angle index. Material and method: 60 females were divided into 3 groups according to age and (BMD) status into: Group1 (non-osteoporosis 20-30 years), Group2 (non-osteoporosis 50years and above), and Group3 (osteoporosis 50years and above), each patient had a CBCT scan, and gonial angle index was measured compared among groups. Results: Gonial angle index showed a significant difference between Group1 and Group2 at p < 0.05, while it showed no significant difference between Group2 and Group3 at p > 0.05. Conclusion: Gonial angle index is significantly affected by age factor while it was not affected by osteoporosis, so it cannot be used as a parameter that can predict bone mineral density status patients
This research aims to study the important of the effect of analysis of covariance manner for one of important of design for multifactor experiments, which called split-blocks experiments design (SBED) to deal the problem of extended measurements for a covariate variable or independent variable (X) with data of response variable or dependent variable Y in agricultural experiments that contribute to mislead the result when analyze data of Y only. Although analysis of covariance with discussed in experiments with common deign, but it is not found information that it is discussed with split-Blocks experiments design (SBED) to get rid of the impact a covariance variable. As part application actual field experiment conducted, begun at
... Show MoreAccording to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through
... Show MoreAbstract
The current research aims to reveal the extent to which all scoring rubrics data for the electronic work file conform to the partial estimation model according to the number of assumed dimensions. The study sample consisted of (356) female students. The study concluded that the list with the one-dimensional assumption is more appropriate than the multi-dimensional assumption, The current research recommends preparing unified correction rules for the different methods of performance evaluation in the basic courses. It also suggests the importance of conducting studies aimed at examining the appropriateness of different evaluation methods for models of response theory to the
... Show More
Abstract
This research deals with Building A probabilistic Linear programming model representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution . &
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show MoreThe ground state density distributions and electron scattering Coulomb form factors of Helium (4,6,8He) and Phosphorate (27,31P) isotopes are investigated in the framework of nuclear shell model. For stable (4He) and (31P) nuclei, the core and valence parts are studied through Harmonic-oscillator (HO) and Hulthen potentials. Correspondingly, for exotic (6,8He) and (27P) nuclei, the HO potential is applied to the core parts only, while the Hulthen potential is applied to valence parts. The parameters for HO and Hulthen are chosen to reproduce the available experimental size radii for all nuclei under study. Finally, the CO component of electron scattering charge form factors are also investigated. Unfortunately, there is no
... Show MoreCalcium-Montmorillonite (bentonite) [Ca-MMT] has been prepared via cation exchange reaction using benzalkonium chloride [quaternary ammonium] as a surfactant to produce organoclay which is used to prepare polymer composites. Functionalization of this filler surface is very important factor for achieving good interaction between filler and polymer matrix. Basal spacing and functional groups identification of this organoclay were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy respectively. The (XRD) results showed that the basal spacing of the treated clay (organoclay) with the benzalkonium chloride increased to 15.17213 0A, this represents an increment of about 77.9% in the
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show More