Background: Incorporation of chemical additives has long been a technique used to improve properties of the gypsum products. The purpose of this work was to study the effects of adding a combination of gum Arabic and calcium hydroxide to a type III dental stone and type IV improved die stone with different proportion. The effect on water/powder ratio, and surface hardness was determined. Material and method: Both material stone and die stone were blended with two proportion of additives so that each material was mixed twice but with different proportion of gum Arabic (0.1% and 0.2%) and calcium hydroxide (0.5 % and 0.3%). Data for hardness were subjected to two-way analysis of variance. Results: The results revealed that the chemical additives were reduced the water requirements of gypsum products so that the reduction of water lead to increase the density of mixture that sets harder. For type III dental stone the additives significantly improved the surface hardness, while for type IV improved die stone the surface hardness was not enhanced except it was designed to be mixed at low water/powder ratio, and in some instances a reduction in hardness was observed, especially at the most reduced water / powder ratio (0.18).
Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
The influence of process speed (PS) and tillage depth (TD) , on growth of corn (Zea mays L) yield, for Maha cultivar, were tested at two ranges of PS of 2.483 and 4.011 km.hr-1, and three ranges of TD of 15,20 and 25cm. The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the PS of 2.483 km.hr-1 was significantly better than the PS of 4.011km.hr-1 in all studied conditions. The , slippage ratio (SR) and the machine efficiency (ME), the physical soil characteristics represented by the soil density and porosity (SBD and TSP), and the plant characteristics represented the roots dry weight, PVI and the crop productivity (CP), except adjective of the fu
... Show MoreDissolution of gypsum rock in water is significant, which may result in hydrocarbon reservoir formation and evaporate deposits. However, the complexity of the gypsum dissolution process is still of interest because of its uncleanness that requires more critical analysis. The objectives of this experimental study are emphasis on the dissolution characteristics of gypsum rock under room temperature and by various types of water; namely: deionized, tap, fresh, acidic, well, and normal rainwatre. In addition, the influences of dissolution on gypsum rock's mechanical and physical characteristics. Gypsum rock was obtained from Agjalar area, in the southwest of Sulaymaniyah city, Northern Iraq. Experimental results show that we
... Show MoreThis study was conducted on five kinds of local soybean seeds (Ibaa, Hawija, Taqa.2, Lee74 and Hassan). The chemical analysis results showed that Hawija soybean has the highest percent of protein which was 38-08%, The amino acid percent was also higher than the other kinds(lysine, Thereonine and Tryptopham), and being 389,250,81 mg/gm nitrogen respectively Both amino acids were important for child nutrition. Hawija was selected, being the best for proteins and basic amino acids, and was utilized in preparation of the adjunct baby food formula. Eighteen formulas had been prepared by using soybean flour kind(Hawija), wheat flour kind (Abu gharib) and full fat powder milk (NIDO). Each formula contained 20% protein as recommended by F.A.O, W.
... Show MoreIn this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show MoreBackground: One effective second-generation triptan for migraine attacks is sumatriptan. Following oral use, it has a 40% restricted bioavailability because of the first-pass metabolism. Aim: To develop the best intranasal Solusomes formula as a substitute that delivers into the brain directly, improving its bioavailability, and removing the first-pass outcome was the aim of this effort. Methodology: We developed solute formulations based on the Box-Behnken design and subsequently produced them via thin-film hydration. The quality by design technique was used to establish a correlation between the formulation parameters (Soluplus® and phosphatidylcholine (PC) concentrations) and signif¬icant quality powers (entrapment efficiency (
... Show MoreThe present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, sep
... Show MoreIn this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show More