Background: Autism spectrum disorder (ASD) is characterized by impairments in social interaction and communication, restricted patterns of behavior, and unusual sensory sensitivities. Saliva may provide an easily accessible sample for analysis. Some salivary constituents levels altered in adolescents with ASD including antioxidants . This study aimed to investigate salivary physicochemical characteristic in relation to oral health status among adolescent with ASD. Materials and methods: Two groups were included in this study: forty institutionalized autistic adolescents and forty apparently healthy school adolescents with age range (12-15 years old, only males) selected randomly from Baghdad. Each group subdivided into two groups according to the severity of dental caries: caries free group (20 child, DMFT=0) and high caries group (20 child, DMFT≥6). Decayed, missing and filled surfaces (DMFS), plaque (PlI), Gingival (GI) and calculus (CI) indices were used to measure oral health status for both groups. Copper (Cu), zinc (Zn) and thiocyanate (SCN) in saliva measured by atomic absorption spectrophotometer. Salivary alpha amylase (sAA) and glutathione (GSH) assessed by enzyme-linked immunosorbent assay (ELISA). Salivary pH and flow rate were measured directly. The data of current study was analyzed using SPSS version 21. Results: A higher value of salivary pH, flow rate, sAA, SCN, Cu and Zn were found among study group than control group with significant difference, also higher in caries free subgroup than high caries subgroup. While GSH was higher in control group than study group. Moderate negative correlations between sAA, Cu, Zn and PlI, CI, GI with highly significant and salivary pH correlate moderately with PlI and CI with highly significant. Conclusion: There is alteration in salivary constituents levels which related to oral health status in adolescents with ASD and can act as adjunctive diagnostic aid for diagnosing autism.
In this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles ha
... Show MoreThe field experiment was conducted in garden of Department of Biology, College of Education for Pure Sciences (Ibn- Al-Haitham), University of Baghdad during the season of growth (2014-2015). The experiment aimed to study the effect of citric acid with two concentration 10, 20 mg. L-1 and glutamic acid with two concentration 50, 100 mg. L-1 on growth and yield of broad bean (Vicia faba). The results were showed an increased in plant height, leaves number. Plant dry weight, chlorophyll content flowers number, absolute growth rate, crop growth rate, legume length and dry weight, legumes number, seed dry weight compared with control plants.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreThe effect of molecules intersystem crossing (Kisc) on characteristics
(energy and duration) of a Passive Q- switched Laser Pulse has been
studied by mathematical description (rate equations model) for
temporal performance of which was used as a saturable absorber
material (passive switch) with laser. The study shows that the energy
and duration pulse are decreasing while the molecules intersystem
crossing into saturable absorber energy levels is increasing.
wind load coefficient
This study aims to investigate the effect of low concentrations of sulfuric antioxidants on sperm of rams. This study was conducted in the field of sheep and goats of the Department of Livestock in the collage of Agricultural Engineering Sciences, University of Baghdad. The semen was collected using the artificial vagina at weekly rate (Pooled semen) and was subjected to different tests and then was divided into seven treatments but different concentrations of cysteine (0.5, 1mM) and glutathione (0.5, 1mM) and taurine (0.5, 1mM).The sample of the semen was diluted with Tris dilution (10: 1). The results showed that the low concentrations of glutathione, cysteine and taurine resulted i
ZnS:Ce3+ nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:Ce3+ quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source, cerium chloride as cerium source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:Ce3+ with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM) and XRD. Upon exposure to 460 nm light at zero bias voltage, ZnS:Ce3+/p-Si showed a high sensitivity of 4000% an
... Show More<p>The current work investigated the combustion efficiency of biodiesel engines under diverse ratios of compression (15.5, 16.5, 17.5, and 18.5) and different biodiesel fuels produced from apricot oil, papaya oil, sunflower oil, and tomato seed oil. The combustion process of the biodiesel fuel inside the engine was simulated utilizing ANSYS Fluent v16 (CFD). On AV1 diesel engines (Kirloskar), numerical simulations were conducted at 1500 rpm. The outcomes of the simulation demonstrated that increasing the compression ratio (CR) led to increased peak temperature and pressures in the combustion chamber, as well as elevated levels of CO<sub>2</sub> and NO mass fractions and decreased CO emission values un
... Show MoreIn this study, gold nanoparticle samples were prepared by the chemical reduction method (seed-growth) with 4 ratios (10, 12, 15 and 18) ml of seed, and the growth was stationary at 40 ml. The optical and structural properties of these samples were studied. The 18 ml seed sample showed the highest absorbance. The X- ray diffraction (XRD) patterns of these samples showed clear peaks at (38.25o, 44.5o, 64.4o, and 77.95o). The UV-visible showed that the absorbance of all the samples was in the same range as the standard AuNPs. The field emission-scanning electron microscope (FE-SEM) showed the shape of AuNPs as nanorods and the particle size between 30-50 nm. Rhodamine-610 (RhB) was prepared at 10<
... Show More