Background: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness varying from 1mm to 10mm in steps of 1mm each. The tested materials were radiographed, we used Image J software, on a computer screen to evaluate the degree of radiopacity for each individual material and compare with the aluminum step wedge. Radiopacity was expressed in mm of equivalent aluminum step wedge. Analysis of varience (ANOVA) and Least Significant Difference (LSD) were used to investigate the significance of differences among the tested groups. Results: Statistical analysis showed highly significant difference among the tested groups (p≤0.01). Amongst, G-aenial composite shows the most radiopaque and it is above or equivalent to that of enamel, while Estelite Sigma Quick composite has the lowest radiopacity value and is equivalent to that of dentin. Conclusion: In line with previous studies, and within the limitation of our study, considerable variations in radiopacity values were found among materials depending on the radiopaque elements incorporated into the matrix. All composite materials tested complied with the ISO 4049 standard.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
Peer-Reviewed Journal
Electronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene
... Show MoreThe hydraulic behavior of the flow can be changed by using large-scale geometric roughness elements in open channels. This change can help in controlling erosions and sedimentations along the mainstream of the channel. Roughness elements can be large stone or concrete blocks placed at the channel's bed to impose more resistance in the bed. The geometry of the roughness elements, numbers used, and configuration are parameters that can affect the flow's hydraulic characteristics. In this paper, velocity distribution along the flume was theoretically investigated using a series of tests of T-shape roughness elements, fixed height, arranged in three different configurations, differ in the number of lines of roughness element
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
A direct, sensitive and efficient spectrophotometric method for the determination of nitrofurantoin
drug (NIT) in pure as well as in dosage form (capsules) was described. The suggested method was
based on reduction NIT drug using Zn/HCl and then coupling with 3-methyl-2-benzothiazolinone
hydrazone hydrochloride (MBTH) in the presence of ammonium ceric sulfate. Spectrophotometric
measurement was established by recording the absorbance of the green colored product at 610 nm.
Using the optimized reaction conditions, beer’s law was obeyed in the range of 0.5-30 μg/mL, with
good correlation coefficient of 0.9998 and limits of detection and quantitation of 0.163 and 0.544
μg/mL, respectively. The accuracy and