Background: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left untreated and glazed, group II (Diamond bur group): the porcelain surface was treated with fine diamond bur at speed of 350000 rpm for 20 seconds, group III (Red stone bur): the porcelain surface was treated with coarse red stone bur at speed of 8500 rpm for 20 seconds. Each group consists of 20 samples, then each group subdivided into two subgroups; one treated with acidulated phosphate fluoride 1.23% and the other subgroup treated with Hydrofluoric acid 9 % with silane coupling agent. Results: The result of this study revealed that there was very high significant difference among all tested groups and the highest shear bond strength was for diamond bur group with HFA and Silane (8.67 MPa), the 2nd highest strength was for control group with HFA and Silane (7.52 MPa), the 3rd was (7.38 MPa) in red stone bur with HFA and Silane, the least shear bond strength values were obtained for subgroups treated with acidulated phosphate fluoride gel 1.23%. Conclusions: The most reliable procedure for bonding orthodontic brackets to the porcelain surfaces is through the surface treatment combinations of mechanical roughening by using diamond bur, 9% Hydrofluoric acid and Silane coupling agent application.
The current research aims to identify the effect of the note-taking strategy (CORNELL) on systematic thinking among second-grade female students in government daytime secondary and intermediate schools. Al-Fadhila School was intentionally chosen to be its student sample for the research affiliated with the First Karkh Directorate for the academic year (2024-2025). Then one of the two sections was randomly chosen to represent the experimental group that studies according to the note-taking strategy (CORNELL) and the other the control group that studies according to the usual method. The equivalence of the two research groups was verified by a set of variables, which were represented by chronological age in months, previous achievement in che
... Show Morecomposition,depiction,antibacterial,antioxidant,and cytotoxicity activities studies of a new nano-sized binuclear metal(||) schiff base complexes
six specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y
الوصف Mixed ligand complexes of Cu (II), Co (II) and Zn (II) with 2-((4-(1-(4-chlorophenylimino) ethyl) phenylimino) methyl) phenol (L) and histidine (His) have been prepared and diagnosed by ¹H and13 C NMR, FT-IR and electronic spectral data, thermal gravimetric, molar conductance and metal analysis measurements. The ligand (L) shows a bidentate nature and the coordination occurs through N and O atoms of imine group and phenol group respectively whereas (His) behave as tridentate ligand, coordinating through the-NH2 group and carboxylate oxygen group and N atoms of imidazole ring. The analytical studies for three complexes have shown octahedral structure. The anticancer activity was screened against human cancer cell such Follicular
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreIn the present work, a study is carried out to remove chromium (III) from aqueous solution by: activated charcoal, attapulgite and date palm leaflet powder (pinnae). The effect of various parameters such as contact time, and temperature has been studied. The isotherm equilibrium data were well fitted by Freundlich and Langmuir isotherm models. The adsorption capacity of chromium (III) that was observed by activated charcoal, attapulgite and date palm leaflet powder (pinnae) increased with the rise of temperature when the concentrations of Cr (III) were 600, 700 and 100mg/L respectively. The greatest adsorption capacity ofactivated charcoal, attapulgite and date palm leaflet powder (pinnae) at 10°C was 7.51, 5.39 and 0.77mg.gˉ¹ respective
... Show More