Background: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left untreated and glazed, group II (Diamond bur group): the porcelain surface was treated with fine diamond bur at speed of 350000 rpm for 20 seconds, group III (Red stone bur): the porcelain surface was treated with coarse red stone bur at speed of 8500 rpm for 20 seconds. Each group consists of 20 samples, then each group subdivided into two subgroups; one treated with acidulated phosphate fluoride 1.23% and the other subgroup treated with Hydrofluoric acid 9 % with silane coupling agent. Results: The result of this study revealed that there was very high significant difference among all tested groups and the highest shear bond strength was for diamond bur group with HFA and Silane (8.67 MPa), the 2nd highest strength was for control group with HFA and Silane (7.52 MPa), the 3rd was (7.38 MPa) in red stone bur with HFA and Silane, the least shear bond strength values were obtained for subgroups treated with acidulated phosphate fluoride gel 1.23%. Conclusions: The most reliable procedure for bonding orthodontic brackets to the porcelain surfaces is through the surface treatment combinations of mechanical roughening by using diamond bur, 9% Hydrofluoric acid and Silane coupling agent application.
Heat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.
The importance of operational risks increases with the increase in technological development, the development of banking operations, the extent of banking compliance, and the attempt of many banks to achieve quality in banking services. And the extent of the position occupied by Iraqi banks for banking compliance and reducing operational risks. The Basel Committee (2) paid its attention to operational risks and the interest of international banks to follow policies that work to ensure banking compliance and cover operational risks, because of its role in reducing losses due to increased costs and achieving an increase in profits. Realizing and working to confront the best possible and traditional methods, that some risks Operational problem
... Show MoreAbstract
In this study, mucilage was extracted from Malabar spinach and tested for drag-reducing properties in aqueous liquids flowing through pipelines. Friction produced by liquids flowing in turbulent mode through pipelines increase power consumption. Drag-reducing agents (DRA) such as polymers, suspended solids and surfactants are used to reduce power losses. There is a demand for natural, biodegradable DRA and mucilage is emerging as an attractive alternative to conventional DRAs. Literature review revealed that very little research has been done on the drag-reducing properties of this mucilage and there is an opportunity to explore the potential applications of mucilage from Malabar spinach. An experi
... Show MoreThis research was aimed to evaluate activity of Rosemary volatile oil and Nisin A in vivo and on B. cereus isolated from some canned meat products in vitro. The results showed that the activity of Rosemary volatile oil (2000 µg/ml) and Nisin A (350 µg\ml) attained to 27 and 19 mm inhibitory zone diameter respectively in well diffusion method. The viable plate count from samples of canned meat treated with effective concentration of Rosemary volatile oil and Nisin A were examined. The samples with Rosemary volatile oil was not showed any CFU/g after 9 days of preservation while sample with Nisin A and control observed 49 and 45 CFU/g respectively. In vivo experiment on mice, two weeks after oral dose of Rosemary volatile oil (2000
... Show MoreAdolescence is considered to be one of the most dangerous and delicate stages that a juvenile goes through. It is a stage which the juvenile enters while he is a child, and emerges from it by being able to have children, but this does not mean the ability to become socially and psychologically mature
This study Ajert to modify the chemical composition of milk fat cows and make it similar to the installation of milk fat mother through the addition of protein and soybean oil to be given Alkhltatnsp sensory protein that the best plan is the ratio of 1:1
Roughness length is one of the key variables in micrometeorological studies and environmental studies in regards to describing development of cities and urban environments. By utilizing the three dimensions ultrasonic anemometer installed at Mustansiriyah university, we determined the rate of the height of the rough elements (trees, buildings and bridges) to the surrounding area of the university for a radius of 1 km. After this, we calculated the zero-plane displacement length of eight sections and calculated the length of surface roughness. The results proved that the ranges of the variables above are ZH (9.2-13.8) m, Zd (4.3-8.1) m and Zo (0.24-0.48) m.
