Background: Mouth breathing can lead to introduce cold, dry unprepared air that insults the tissue of oral cavity, nasopharynx and lung, leading in turn to pathological changes in oronasal cavity, nasopharyngeal and other respiratory tissue, mouth breathing associated with nasal obstruction may lead to many health problems, in particular oral health problems such as inflammation of gingiva, oral dryness, change in oral environment that may decrease pH, salivary flow rate and increase bacteria and dental caries.Aims of the present study were to assess the oral health condition among mouth breather associated with nasal obstruction, including dental caries, oral cleanliness and gingival health condition as well as to evaluate the changes in salivary physical characteristics and salivary mutans streptococci counts, and their relation to oral variables in comparison to a control group. Materials and Methods: Thirty patients with mouth breathing associated with nasal obstruction (15 females and 15 males) were selected as a study group with an age range (18-22) years old, all subjects were examined by ENT specialist to confirm mouth breathing. A 30 gender and age matched healthy looking subjects without nasal obstruction were selected as control. The diagnosis and recording of dental caries was according to severity of dental caries lesion through the application of D1_4MFS(Manji et al., 1989). Plaque index of (Silness and Loe, 1964) was used for plaque assessment; gingival index of (Loe and Silness, 1963) was used for gingival health condition assessment. Stimulated salivary samples were collected according to (Tenovuo and Lagerlof, 1996) and the following variables were recorded: microbiological analysis included the salivary counts of mutans streptococci, salivary flow rate, salivary pH (potential of hydrogen) and then measurement of salivary viscosity by using Ostwald's viscometer. Results: Results of the present study showed that the mouth breathing group had statistically highly significant, higher plaque and gingival indices than nose breathing group (P<0.01) with a positive highly significant correlation between them in mouth breathing and nose breathing groups (r=0.56, r= 0.64, respectively).The salivary flow rate was lower among mouth breathing with highly significant difference than nose breathing (P<0.01), also salivary pH was lower among mouth breathing but with significant differencecompare to nose breathing (P<0.05); statistically a negative highly significant correlation was recorded among mouth breathing group between salivary flow rate with gingival index (r= -0.56). It has been found that salivary viscosity was not statistically significant difference between mouth breathing group and nose breathing group. The salivary viscosity was found to be inversely significantly correlated with salivary flow rate among mouth breathing group (r= -0.38). While it was positively not significantly correlated with plaque index, gingival index and counts of mutans streptococci among mouth breathing group. Data analysis of the present study showed that salivary mutans streptococci counts among mouth breathing group were higher than that among nose breathing group, difference was statistically highly significant (P<0.01). Conclusion: Mouth breathing associated with nasal obstruction may have an effect on oral health status, leading to an increase in periodontal disease and changes in dental caries.
A batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
A theoretical study to design a conformal microstrip antennas was introduced in this work. Conformal microstrip antennas define antennas which can be conformed to a certain shape or to any curved surface. It is used in high-speed trains, aircraft, defense and navigation systems, landing gear and various communications systems, as well as in body wearable. Conformal antennas have some advantages such as a wider-angle coverage compared to flat antennas and low radar cross-sectional (RCS) and they are suitable for using in Radome. The main disadvantage of these antennas is the narrow bandwidth. The FDTD method is extremely useful in simulating complicated structures because it allows for direct integration of Maxwell's equations depending o
... Show MoreThe current research deals with short term forecasting of demand on Blood material, and its' problem represented by increasing of forecast' errors in The National Center for Blood Transfusion because using inappropriate method of forecasting by Centers' management, represented with Naive Model. The importance of research represented by the great affect for forecasts accuracy on operational performance for health care organizations, and necessity of providing blood material with desired quantity and in suitable time. The literatures deal with subject of short term forecasting of demand with using the time series models in order to getting of accuracy results, because depending these models on data of last demand, that is being sta
... Show MoreThis valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum
... Show MoreThis study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MoreThis work studied the facilitation of the transportation of Sharqi Baghdad heavy crude oil characterized with high viscosity 51.6 cSt at 40 °C, low API 18.8, and high asphaltenes content 7.1 wt.%, by reducing its viscosity from break down asphaltene agglomerates using different types of hydrocarbon and oxygenated polar solvents such as toluene, methanol, mix xylenes, and reformate. The best results are obtained by using methanol because it owns a high efficiency to reduce viscosity of crude oil to 21.1 cSt at 40 °C. Toluene, xylenes and reformate decreased viscosity to 25.3, 27.5 and 28,4 cSt at 40 °C, respectively. Asphaltenes content decreased to 4.2 wt. % by using toluene at 110 °C. And best improvement in API of the heavy crude o
... Show MoreElectrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show More