Background: Mouth breathing can lead to introduce cold, dry unprepared air that insults the tissue of oral cavity, nasopharynx and lung, leading in turn to pathological changes in oronasal cavity, nasopharyngeal and other respiratory tissue, mouth breathing associated with nasal obstruction may lead to many health problems, in particular oral health problems such as inflammation of gingiva, oral dryness, change in oral environment that may decrease pH, salivary flow rate and increase bacteria and dental caries.Aims of the present study were to assess the oral health condition among mouth breather associated with nasal obstruction, including dental caries, oral cleanliness and gingival health condition as well as to evaluate the changes in salivary physical characteristics and salivary mutans streptococci counts, and their relation to oral variables in comparison to a control group. Materials and Methods: Thirty patients with mouth breathing associated with nasal obstruction (15 females and 15 males) were selected as a study group with an age range (18-22) years old, all subjects were examined by ENT specialist to confirm mouth breathing. A 30 gender and age matched healthy looking subjects without nasal obstruction were selected as control. The diagnosis and recording of dental caries was according to severity of dental caries lesion through the application of D1_4MFS(Manji et al., 1989). Plaque index of (Silness and Loe, 1964) was used for plaque assessment; gingival index of (Loe and Silness, 1963) was used for gingival health condition assessment. Stimulated salivary samples were collected according to (Tenovuo and Lagerlof, 1996) and the following variables were recorded: microbiological analysis included the salivary counts of mutans streptococci, salivary flow rate, salivary pH (potential of hydrogen) and then measurement of salivary viscosity by using Ostwald's viscometer. Results: Results of the present study showed that the mouth breathing group had statistically highly significant, higher plaque and gingival indices than nose breathing group (P<0.01) with a positive highly significant correlation between them in mouth breathing and nose breathing groups (r=0.56, r= 0.64, respectively).The salivary flow rate was lower among mouth breathing with highly significant difference than nose breathing (P<0.01), also salivary pH was lower among mouth breathing but with significant differencecompare to nose breathing (P<0.05); statistically a negative highly significant correlation was recorded among mouth breathing group between salivary flow rate with gingival index (r= -0.56). It has been found that salivary viscosity was not statistically significant difference between mouth breathing group and nose breathing group. The salivary viscosity was found to be inversely significantly correlated with salivary flow rate among mouth breathing group (r= -0.38). While it was positively not significantly correlated with plaque index, gingival index and counts of mutans streptococci among mouth breathing group. Data analysis of the present study showed that salivary mutans streptococci counts among mouth breathing group were higher than that among nose breathing group, difference was statistically highly significant (P<0.01). Conclusion: Mouth breathing associated with nasal obstruction may have an effect on oral health status, leading to an increase in periodontal disease and changes in dental caries.
This work revealed the spherical aromaticity of some inorganic E4 cages and their protonated E4H+ ions (E=N, P, As, Sb, and Bi). For this purpose, we employed several evaluations like (0D-1D) nucleus independent chemical shift (NICS), multidimensional (2D-3D) off-nucleus isotropic shielding σiso(r), and natural bond orbital (NBO) analysis. The magnetic calculations involved gauge-including atomic orbitals (GIAO) with two density functionals B3LYP and WB97XD, and basis sets of Jorge-ATZP, 6-311+G(d,p), and Lanl2DZp. The Jorge-ATZP basis set showed the best consistency. Our findings disclosed non-classical aromatic characters in the above molecules, which decreased from N to Bi cages. Also, the results showed more aromaticity in E4 than E4H+
... Show MoreThe present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (
In this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9
... Show MoreThe factors influencing the financial market are rapidly becoming more complex. The impact of non-financial factors on the performance of a company’s common stock can increase in ways that were not previously expected. This study investigated how brand capital affects the risk of stock prices in Iraqi private banks listed on the Iraq Stock Exchange failing by identifying the likelihood of a crash caused by a negative deviation in the distribution of returns on ordinary shares. As a result, the current study’s concept is to review an analytical knowledge framework of the nature of that relationship, its changes, and its impact on the pricing of ordinary shares of the banks of the researched sector for the years 2009 to 2017, as w
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreThis studies deals with investigated the potential of a Iraqi bentonite clay for the adsorption of bromo phenol red dye from contaminated water. Impulse adsorption experiments were performed. The contact time influence of initial dye concentration, temperature, pH, ionic strength, partical size adsorbent and adsorbent dosage on bromo phenol red adsorption are investigated in a series of batch adsorption experiments. Adsorption equilibrium data were analyzed and described by the Freundlich, Langmuir and temkin isotherms equations. Thermodynamic parameters inclusive the Gibbs free energy (∆G• ), enthalpy (∆H• ), and entropy (∆S• ), were also calculated. These parameters specified that adsorption of bromo phenol red onto bentonite
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
The poly(ethylene oxide) polymer (PEO) is doped with fine powder of MnCl2 salt and thin films of thickness (50–150 mm) with salt content (0, 5, 10, 15, and 20 wt%) are obtained. The AC electrical conductivity and dielectric constants are studied as a function of temperature through an impedance technique. It is found that AC conductivity increases and the calculated activation energy decreases with increasing temperature due to enhancement of the ionic conduction in the film bulk. The dielectric constants of the doped membranes increase with temperature. It is found that the peak value of the tanloss is shifted to a higher frequency at higher temperatures. The dielectric behavior is explained on the basis of
... Show More