Background: Imaging techniques play a very important role in the specialty of endodontic. The ultrasonographic technique is non-expensive procedure, safe, and reproducible. The aim of the study was to determine the sensitivity, specificity, and accuracy of ultrasound and color Doppler ultrasonography in evaluation of periapical lesions (cyst, granuloma, mixed lesion “cyst within graulomas mass”, and abscess. Subject, Material and method: The sample consists of prospective study for 64 Iraqi participants who attended Karbalaa Specialized Center for Dentistry (males & females). Those patients were diagnosed clinically and radiographically as having periapical lesions of dental origin. They were examined by real time ultrasound and color Doppler ultrasonography with echographic predilection about the type of the lesion based on three parameters measured by ultrasound including: content, outline, and the vascularity. The echographic diagnosis was compared to the final histopathological and /or surgical findings obtained from the periapical surgeries. Results: The sensitivity, specificity and accuracy of ultrasound diagnosis were respectively as follow: for periapical cyst, they were 92.3%, 96.1%, and 95.3%. While for periapical granulomam, they were 87.0%, 92.7%, and 90.6%. For mixed lesions, they were 66.7%, 98.4%, and 96.9% and lastly for periapical abscess, they were 92.0%, 97.4%, and 95.3%. The ultrasound diagnosis in our study had an overall agreement of 89% between ultrasound diagnosis and final diagnosis based on histopathological and/ or surgical findings. Conclusion: Ultrasound is a non- invasive, low cost, and complementary method for examination and diagnosis of periapical lesions and there is correlation of ultrasonographic findings with histopathological and /or surgical findings for final diagnosis.
This study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go
... Show MoreThis paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreIn the current analysis, the effects of circumferential scratches along the inner surface of a 170ᵒ -arc partial journal bearing has been numerically investigated. Their impact on the thermo-elasto-hydrodynamic performance characteristics, including maximum pressure, temperature, deformation, and stress, has been examined thoroughly. The ANSYS Fluent CFD commercial code was employed to tackle the iterative solution of flow and heat transfer patterns in the fluid film domain. They are then applied to the ANSYS Static Structure solver to compute the deformation and stress resulted in the solid bearing zone. A wide range of operating conditions has been considered, including the eccentricity ratio ( ) and scratch depth (
... Show MoreCarbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show More