Background: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment. The oxygen plasma group consisted of 20 denture teeth specimen treated with oxygen plasma for two minutes exposure time at plasma apparatus. The argon plasma group consisted of 20 denture teeth treated with argon plasma for two minuets exposure time. All the specimens are undergone flasking and wax elimination procedure in the conventional way. All specimens stored in distilled water for 7 days at 37°C, then half of the specimens of all groups undergoes thermocycling between 5°C -55°C in 60 seconds cycles for three days and tested for shear bond strength using universal testing machine the data was collected and analyzed statistically using analysis of variance and independent sample t-test. Results: The plasma treated groups showed the higher mean force required to fracture the acrylic teeth from their heat cured acrylic resin denture bases, as compared to control group, and the oxygen plasma treatment group showed higher shear bond value than the argon plasma treatment. The thermocycling had a deleterious effect on bonding strength for control group while the plasma treated group showed an increase in bond strength following thermocycling. Conclusion: Plasma treatment method was an effective approach for increasing the shear bond strength as a result of surface oxidation and chemical etching effect of oxygen plasma and micromechanical interlocking effect of argon plasma.
Objective: The study aims to determine the effect of Toxoplasma gondii infection on the
genetic sequence of breast cancer patients in the Medical City Hospital – Tumor Unit /
Iraq-Baghdad.
Methodology: A study was carried out in the City of Medicine / Oncology Unit / Baghdad,
during the period 1st June 2016 to 15
th March 2017. Forty samples of tissue and serum
were collected from patients who complaining from Breast cancer and infected with
Toxoplasmosis. Forty sera samples were taken from patients complaining from parasitic
infection only; without breast cancer as control group. Data is analyzed by using of
descriptive and inferential data analysis methods.
Results: The results show that there is an effe
This research was carried out in quail in the laboratory of histopathology diseases during four months. The objectives of this study was to detecting the effects of the addition of the alcohol extract of ginger to ovary tissue of quail. The two groups of birds were in almost similar weights and were placed in cages. Each group consisted of 8 quails. The first group (control group) fed on regular feeding without adding alcoholic extract of ginger. The second group (treated group) fed on the same normal food after adding the alcohol extract of ginger at a concentration of 300 mg / kg. The results indicated that ginger have positive effects on folliculogenesis.
Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show MoreAlumina thin films have significant applications in the areas of optoelectronics, optics, electrical insulators, sensors and tribology. The novel aspect of this work is that the homogeneous alumina thin films were prepared in several stages to generate a plasma jet. In this paper, aluminium nanoparticles suspended in vinyl alcohol were prepared using exploding wire plasma. TEM analysis was used to determine the size and shape of particles in aluminium and vinyl alcohol suspensions; the TEM images showed that the particle size is 17.2 nm. Aluminium/poly vinyl alcohol (Al/PVA) thin films were prepared using this suspension on quartz substrate by plasma jet technique at room temperature with an argon gas flow rate of 1 L/min. The Al/PV
... Show MoreThe brief description to the theory of propagation of electromagnetic waves in plasma was done. The cutoff and resonance regions have been showed. The principles of plasma heating at electron cyclotron resonance (ECRH) method have been mentioned. The numerical simulation to three different station: Tosca station in United Kingdom, ISX-B station in USA and T-10 station in Russia had been done. The optical depth and the friction of energy absorbed A have been calculated. The simulation results indicate that both and A are increase with size of the tokamak and it is possible to obtain full absorption in large tokamak.
A new scheme of plasma-mediated thermal coupling has been implemented which yields the temporal distributions of the thermal flux which reaches the metal surface, from which the spatial and temporal temperature profiles can be calculated. The model has shown that the temperature of evaporating surface is determined by the balance between the absorbed power and the rate of energy loss due to evaporation. When the laser power intensity range is 107 to108 W/cm2 the temperature of vapor could increase beyond the critical temperature of plasma ignition, i.e. plasma will be ignited above the metal surface. The plasma density has been analyzed at different values of vapor temperature and pressure using Boltzmann’s code for calculation of elec
... Show MoreTitanium alloy (Ti-6Al-4V) samples were nitrided in low pressure (1.3, 3 mbar) dc-glow discharge plasmas of nitrogen. The treating time was 5, 10 and 15 hour and the temperatures range of the samples during the nitriding process was close to 800oC. The obtained microstructures of the nitride layers were studied by x-ray diffraction and optical microscopy. The ε –Ti2N, ζ-Ti3N3-x and η-Ti3N2-x.phases were formed and addition to the solid solution of nitrogen in titanium, α (Ti,N). Micro hardness measurements exhibit an increment for the Ti-alloy specimens which nitrided at 800oC for 10 and 15h.Corrosion measurements were obtained for the Ti-6Al-4V alloy in Ringer solution after plasma nitriding. The clear improving in the corrosion r
... Show MoreIn this work, radius of shock wave of plasma plume (R) and speed of plasma (U) have been calculated theoretically using Matlab program.
The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these ca
... Show More