Background: White-spot lesion is one of the problems associated with the fixed orthodontic treatment. The aims of this in-vitro study were to investigate enamel damage depth on adhesive removal when the adhesive were surrounded by sound, demineralized or demineralized enamel that had been re-mineralized prior to adhesive removal using 10% Nano-Hydroxy apatite and to determine the effect of three different adhesive removal techniques. Materials and methods: Composite resin adhesive (3M Unitek) was bonded to 60 human upper premolars teeth which were randomly divided in to three groups each containing ten sound teeth and ten teeth with demineralized and re-mineralized lesions adjacent to the adhesive. A window of 2 mm was prepared on the buccal surface of the tooth and painted with an acid resistant nail varnish except for the window.The demineralized enamel produced by immersion of teeth in demineralization buffer for 12 days.half of the demineralized window, was covered with acid –resistant red nail varnish, and the samples were then subjected to re-mineralization with 10% of nano hydroxyapatite. The adhesive was removed with either :(1) fiber reinforced composite bur in slow speed handpiece (SS); (2)12 fluted long flame carbide bur in high speed handpiece (HS); (3) ultrasonic scaler (US).damage to the enamel was assessed using stereomicroscope with grid eye piece. Results: the greatest to least mean depth of damage with three different adhesive removal techniques to sound enamel was HS˃ US ˃SS and to demineralized and re-mineralized enamel were SS ˃US˃ HS. Sound enamel had the least amount of damage. Re mineralization before the adhesive removal highly significant reduced the amount of damage produced by all techniques compared with demineralized enamel. Conclusions: When the demineralized enamel was present 12 fluted long flame carbide bur were found to be the least damage in adhesive removal technique and re-mineralization further reduced the amount of enamel damage
As one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show MoreA ‘locking-bolt’ demountable shear connector (LBDSC) is proposed to facilitate the deconstruction and reuse of steel-concrete composite structures, in line with achieving a more sustainable construction design paradigm. The LBDSC is comprised of a grout-filled steel tube and a geometrically compatible partially threaded bolt. The latter has a geometry that ‘locks’ the bolt in compatible holes predrilled on the steel flange and eliminates initial slip and construction tolerance issues. The structural behaviour of the LBDSC is evaluated through nine pushout tests using a horizontal test setup. The effects of the tube thickness, strength of concrete slab, and strength of infilled grout on the shear resistance, initial stiffness, and du
... Show MoreTo determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.
E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.
A total of 63 patients with periodontitis (case) and 35
The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreThe main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.
Background: Few updated retrospective histopathological-based studies in Iraq evaluate a comprehensive spectrum of oro-maxillofacial lesions. Also, there was a need for a systematic way of categorizing the diseases and reporting results in codes according to the WHO classification that helps occupational health professionals in the clinical-epidemiological approach.
Objectives: to establish an electronic archiving database according to the ICD-10 that encompasses oro-maxillofacial lesions in Sulaimani city for the last 12 years, then to study the prevalence trend and correlation with clinicopathological parameters.
Subjects and Methods: A descri
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the
... Show More